I NTERPOLATING S UBDIVISION FOR M ESHES WITH A RBITRARY T OPOLOGY [Z ORIN ET. AL ] – SIGGRAPH96...

Post on 18-Apr-2015

106 views 0 download

Transcript of I NTERPOLATING S UBDIVISION FOR M ESHES WITH A RBITRARY T OPOLOGY [Z ORIN ET. AL ] – SIGGRAPH96...

INTERPOLATING SUBDIVISION FOR MESHES WITH ARBITRARY TOPOLOGY [ZORIN ET. AL] – SIGGRAPH’96

Rodrigo Braga Pinheiro

INTRODUÇÃO

A superfície a ser subdividida começa com uma malha poligonal original, chamada de “gaiola de controle”.

A partir daí a superfície é subdividida em polígonos adicionais e seus vértices são movidos de acordo com uma série de regras.

As regras variam de um esquema de subdivisão para outro. Estas regras que determinam as propriedades da superfície. Por exemplo: Modified Butterfly (triângulos), Catmull-Clark(quad).

CONTINUIDADE Uma característica de cada esquema é a sua

continuidade.

Esquemas são referenciados como tendo continuidade . , onde n determina quantas derivadas são continuas.

significa que nenhuma derivada é continua. Esta superfície não tem buracos na malha, mas pode apresentar quinas.

significa que a 1a derivada é continua. Esta superfície não tem buracos na malha e não gera quinas quando duas funções se encontram.

Cn

C0

C1

CONTINUIDADE

C0

C1

Não tem continuidade Se encontram, mas derivadas diferentes no ponto p.

Se encontram e possuem derivadas iguais no ponto p.

APROXIMATIVO VS INTERPOLATIVO

No esquema aproximativo os vértices da gaiola de controle não ficam em cima da superfície limite.

No esquema interpolativo os vértices já criados no passo de subdivisão anterior são mantidos na mesma posição.

UNIFORME VS NÃO-UNIFORME

Os esquemas uniformes dividem todas as áreas da gaiola de controle usando as mesmas regras.

Os esquemas não-uniformes podem, por exemplo, subdividir uma aresta de uma maneira e outra aresta de outra maneira.

TRIANGULAR VS QUADRILÁTERO

Um esquema pode ter a característica de trabalhar com malhas de triângulos ou de quads.

AVALIAÇÃO DA SUPERFÍCIE

Todo algoritmo de subdivisão possui como característica uma “máscara de avaliação”. A máscara define quais os vértices que deverão ser levados em conta para deslocar um novo vértice gerado em determinada subdivisão.

ESTACIONÁRIO VS NÃO-ESTACIONÁRIO

Se um esquema é estacionário, significa que o mesmo grupo de regras é usado para subdividir a malha em cada passo.

Um esquema não estacionário pode usar um conjunto de regras para o passo i e um conjunto diferente para o passo i + 1.

VÉRTICES REGULARES VS EXTRAORDINÁRIOS Cada esquema de subdivisão tem sua preferência para a valência de um

vértice. Ou seja, o criador do algoritmo de subdivisão define um número considerado ideal para a quantidade de arestas que devem chegam a um vértice.

Um vértice com a valência “preferida” é chamada de vértice regular. Ou seja, se um vértice tem “n” arestas chegando nele e o número de valência escolhido pelo criador for “n”, esse vértice é regular.

Um vértice com uma valência diferente da definida pelo criador é chamado de extraordinário.

Os esquemas podem ou não produzir novos vértices extraordinários em cada subdivisão.

Extraordinário Regular

MODIFIED BUTTERFLY

Nosso esquema escolhido possui continuidade , é interpolativo, uniforme, estacionário, utiliza malhas triangulares, tem como valência 6 os vértices regulares e usa as seguintes máscaras abaixo para subdivisão.

C1

Regular

Extraordinário

MODIFIED BUTTERFLY – SUBDIVISÃO REGULAR Ao dividir uma aresta em duas, se os dois vértices da ponta

da aresta (pais) forem regulares, a seguinte máscara com os respectivos pesos são usados.

W é o valor de tensão a ser usado. Esse fator representa o quanto a superfície vai ficar próxima da malha de controle.

MODIFIED BUTTERFLY – SUBDIVISÃO EXTRAORDINÁRIA Caso os dois vértices da aresta (pais) sejam extraordinários, calcula-se o

peso de acordo com o número de vértices vizinhos e divide-se por dois.

Caso somente um vértice da aresta seja irregular, usa-se somente este vértice para se calcular o peso.

IMPLEMENTAÇÃO (INEFICIENTE)

Primeiro foi feito com uma estrutura de dados convencional para malhas. Um array guardava os vértices e outro array guardava as faces (em grupo de 3 indíces).

Na hora da subdivisão, este algoritmo apresenta complexidade O(F*F) e uma constante alta. Pois cada face deve ser subdividida e para cada subdivisão deve se achar a valência e os vértices vizinhos de cada vértice. Para achar esta valência, deve-se varrer toda a estrutura de dados de novo.

IMPLEMENTAÇÃO (INEFICIENTE) A tabela abaixo mostra os resultados para a

implementação com a estrutura de dados mencionada no slide anterior.

Tetraedro Coelho

Faces T(s) Faces T(s)

16 0.001 800 0.016

64 0.002 3200 0.127

256 0.005 12800 1.7

1024 0.013 51200 27.9

4096 0.187 204800 7 min

16384 2.8 819200 >10min

65536 44.6

262144 >10 min

IMPLEMENTAÇÃO

Para melhorar o desempenho, foi utilizada uma estrutura de half-edge. Que permite que consultas variadas na malha sejam feitas em tempo constante.

IMPLEMENTAÇÃO

Carrega modelo e cria um VertexBuffer e um IndexBuffer.

A partir do VertexBuffer e do IndexBuffer, inicializa-se a estrutura de Half-Edge Para cada vértice, cria-se um HE_vert A cada 3 vértices, cria-se uma HE_face e

interativamente começa a criar as HE_edge

IMPLEMENTAÇÃO (HALF-EDGE)

Tetraedro (visão de cima)

IMPLEMENTAÇÃO (HALF-EDGE)

Estão sendo avaliados os vértices da base

IMPLEMENTAÇÃO (HALF-EDGE)

Half-edge

Half-edge oposta

A

IMPLEMENTAÇÃO (HALF-EDGE)

BC

D

• Um vértice pode ter “n” half-edges (se estiver conectado a “n” arestas), mas só é necessário a referência para uma delas.

• Uma face pode ter 3 half-edges, mas só é necessário a referência para uma delas.

IMPLEMENTAÇÃO (NORMAIS)

Média das normais das faces que contém o vértice

IMPLEMENTAÇÃO (TESSELLATION)

• Percorre cada face

• Cria vértice de cada aresta da face• 12 novas half-edges

• Marca vértices que deverão ter suas half-edges antigas deletadas

0

1

2

34

5

67

8

9

10

11

IMPLEMENTAÇÃO (TESSELLATION)

Para cada um dos vértices criados, calcula-se as novas half-edges.

Após todas as half-edges terem sidos criadas, é necessário deslocar os vértices de acordo com a informação dos seus vértices geradores (pais).

Extraordinário

Regular

IMPLEMENTAÇÃO

Algumas consultas usadas através dessa estrutura de dados.

IMPLEMENTAÇÃO

Com essa estrutura a complexidade o algoritmo ficou linear. O(F). Abaixo os resultados:

Tetraedro Coelho

Faces T(s) Faces T(s)

16 0.001 800 0.017

64 0.002 3200 0.50

256 0.003 12800 0.131

1024 0.010 51200 0.644

4096 0.051 204800

4.2

16384 0.204 819200

42.9

65536 0.901

262144

6.3

IMPLEMENTAÇÃO

O(F*F) vs O(F)

Tetraedro Coelho

Faces T(s) Faces T(s)

16 0.001 800 0.016

64 0.002 3200 0.127

256 0.005 12800

1.7

1024 0.013 51200

27.9

4096 0.187 204800

7 min

16384 2.8 819200

>10min

65536 44.6

262144

>10 min

Tetraedro Coelho

Faces T(s) Faces T(s)

16 0.001 800 0.017

64 0.002 3200 0.50

256 0.003 12800

0.131

1024 0.010 51200

0.644

4096 0.051 204800

4.2

16384 0.204 819200

42.9

65536 0.901

262144

6.3

RESULTADOS

RESULTADOS

BIBLIOGRAFIA Zorin, D., P. Schröder, and W. Sweldens. “Interpolating Subdivision

for Meshes with Arbitrary Topology.” Siggraph ‘96. pp. 189–192. Dyn, N., J. A. Gregory, and D. A. Levin. “Butterfly Subdivision

Scheme for Surface Interpolation with Tension Control.” ACM Transactions on Graphics. Vol. 9, No. 2 (April 1990): pp. 160–169.

DeRose, T., M. Kass, and T. Truong. “Subdivision Surfaces in Character Animation.” Siggraph ‘98. pp. 85–94.

Dyn, N., S. Hed, and D. Levin. “Subdivision Schemes for Surface Interpolation.” Workshop in Computational Geometry (1993), A. C. et al., Ed.,” World Scientific, pp. 97–118.

Zorin, D. “Stationary Subdivision and Multiresolution Surface Representations.” Ph.D. diss., California Institute of Technology, 1997. (Available at ftp://ftp.cs.caltech.edu/tr/cs-tr-97-32.ps.Z)

Catmull, E., and J. Clark. “Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes.” Computer Aided Design, 1978.

Halstead, M., M. Kass, and T. DeRose. “Efficient, Fair Interpolation Using Catmull-Clark Surfaces.” Siggraph ‘93. p. 35.

http://www.gamasutra.com/view/feature/3177/subdivision_surface_theory.php?page=2