cópia de 1-s2.0-S2213343713001978-main.pdf

download cópia de 1-s2.0-S2213343713001978-main.pdf

of 9

Transcript of cópia de 1-s2.0-S2213343713001978-main.pdf

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    1/9

    Adsorption of textile dye Reactive Red 120 by the chitosanFe(III)-crosslinked:Batch and fixed-bed studies

    Carla Albertina Demarchi, Mayara Campos, Clovis Antonio Rodrigues *

    Nucleo de InvestigacoesQu mico-Farmaceuticas (NIQFAR), Universidade do Vale do Itaja (UNIVALI), Itaja 88302-202, Santa Catarina, Brazil

    Introduction

    Many industries, such as the textiles, leather, cosmetics, paper,

    printing and plastics industries, use synthetic dyes as part of their

    production processes. Effluents from these industries therefore

    contain various kinds of synthetic dye stuffs [1]. Dye contamina-tion in aqueous wastewater from industries is a serious problem

    because dyes are not biodegradable, and tend to suppress

    photosynthetic activity in aquatic habitats by preventing the

    penetration of sunlight [2]. Moreover, most of these dyes cancause

    allergy, dermatitis, and skin irritation [3], and can also lead to

    genetic mutations in humans[4].

    Compared to traditional methods of decontamination of

    effluents containing dyes, the adsorption method is the best

    alternative, and has been widely used to remove pollutants from

    effluents [5], due to its low cost, simplicity of design, availability

    and ability to treat dyes in more concentrated form[6,7]. Most

    commercial systems use activated carbon as adsorbent to remove

    dyes in water, because of its great adsorption capacity. However,

    its widespread use is restricted due to its cost. In order to decreasethe cost of treatment, some attempts have been made to find low-

    cost alternative adsorbents[1]. Chitosan is derived from a natural

    polysaccharide, chitin, which is the second most abundant

    polysaccharide in nature. It is relatively cheap and exhibits higher

    dye adsorption capacities[8,9].

    Absorbents containing iron have received a great deal of

    attention, due to their chemical stability and high absorption

    capacity[1013]. Chitosaniron complex has been used to remove

    oxyanions, such as, Cr (VI)[14,15], As(III)[16]and As (V)[17]from

    aqueous solutions, however the uses of chitosaniron complex for

    adsorption dyes have not been reported.A great number of publications related to adsorption of textile

    dyes by magnetic chitosan and its derivatives have recently been

    reported in the literature [10,1822]. However, theuse of magnetic

    particles is restricted to the separation process using the batch

    method, and it is not appropriate for fixed-bed process. Another

    disadvantage of magnetic particles, as compared with the

    chitosaniron complex, is related to the fact that their synthesis

    involves many steps. On the other hand, the ironchitosan

    complex is easily synthesized.

    This paper presents a study of the use of chitosaniron(III)

    crosslinked with glutaraldehyde (Ch-Fe), as an adsorbent for the

    textile anionic dye Reactive Red 120 (RR120). This work involves

    studies of equilibrium and kinetics of adsorption in different

    conditions of pH and temperature, study of recovery and reuse ofthe adsorbent, and also factorial design in batch studies, and fixed-

    bed studies to predict adsorption on an industrial scale.

    Experimental

    Materials

    The chitosan (viscosimetric molecular weight of 2.5 105 g/

    mol, and desacetylation degree of 85%) was obtained from

    Purifarma (Sao Paulo). The dye Reactive Red 120 (Procion Red

    HE-3B; MF: C44H24Cl2N14O20S6Na6; MW: 1469.98) was kindly

    Journal of Environmental Chemical Engineering 1 (2013) 13501358

    A R T I C L E I N F O

    Article history:

    Received 16 August 2013

    Received in revised form 7 October 2013Accepted 8 October 2013

    Keywords:

    Reactive Red 120

    Chitosaniron(III)

    Textile wastewater

    Factorial design

    A B S T R A C T

    This paper presents a study of the use of chitosaniron(III) crosslinked with glutaraldehyde (Ch-Fe) as an

    adsorbent for the textile anionic dye Reactive Red 120 (RR120) in batch and fixed-bed systems. The

    maximum adsorption capacity was calculated from the adsorption isotherms, and well fitted by the

    LangumirFreudlich isotherm model.The process followed the kinetic model of pseudo-second-order. In

    fixed-bed studies, the Thomas, Adams-Bahort and Clark models were applied to the breakthrough

    curves. The thermodynamic parameters showed that the adsorption process is spontaneous and

    favorable. The adsorbent can be easily regenerated and reused. The adsorption of the RR120 was

    optimized using a 33 factorial design, and the initial pH of the dye solution had a significant effect.

    2013 Elsevier Ltd. All rights reserved.

    * Corresponding author at: Universidade do Vale do Itaja , ItajaCEP 88302-202,

    SC, Brazil. Tel.: +55 47 3341 7664; fax: +55 47 3341 7600.

    E-mail address: [email protected](C.A. Rodrigues).

    Contents lists available at ScienceDirect

    Journal of Environmental Chemical Engineering

    j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / j e c e

    2213-3437/$ see front matter 2013 Elsevier Ltd. All rights reserved.

    http://dx.doi.org/10.1016/j.jece.2013.10.005

    http://dx.doi.org/10.1016/j.jece.2013.10.005mailto:[email protected]://www.sciencedirect.com/science/journal/aip/22133437http://dx.doi.org/www.elsevier.com/locate/jecehttp://dx.doi.org/10.1016/j.jece.2013.10.005http://dx.doi.org/10.1016/j.jece.2013.10.005http://dx.doi.org/www.elsevier.com/locate/jecehttp://www.sciencedirect.com/science/journal/aip/22133437mailto:[email protected]://dx.doi.org/10.1016/j.jece.2013.10.005
  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    2/9

    donated by Trento Brasil Beneficiamento Textil (Nova Trento,

    Brazil).All theother reagents used were of analytic grade,and were

    used without purification. The adsorbent Ch-Fe was prepared and

    characterized as described by Klepka et al. [23]. The average

    particle size was determined using SEM (scanning electron

    microscopy) and was 4.7 1.7mm [16]. The zero-point of charge(pHzpc) was determined by potentiometric titration [24] and was

    found to be 8.5. Thequantityof iron in thesample wasdeterminedby

    colorimetric methods using 1.10 phenanthroline and a double beam

    UVvis spectrophotometer (Spectrovision mod. DB 188S, China), and

    was found to be 80.5 mg/g.

    Batch studies

    Adsorption kinetics

    The adsorption kinetics were performed in the system,

    thermostated at 25 8C using 25 mg of adsorbent, 20 mL of

    RR120 solution 400 mg/L, under continuous agitation. Ali-

    quots were removed at certain time intervals (5, 15, 30, 45,

    60, 90 and 120 min), the adsorbent was separated bycentrifugation, and the quantity of dye present in the

    supernatant was spectrophotometrically determined based

    on an analytical curve (adsorbance at 540 nm vs. dye

    concentration), using a UVvis spectrophotometer Spectro-

    vision mod. DB 188S, China.

    Adsorption isotherms

    The adsorption isotherms were obtained using a thermostatic

    bath with continuous agitation, with 20 mL of dye solution at

    concentrations between 100 and 500 mg/L containing 25 mg of

    adsorbent, and agitation time of 60 min. The studies were

    conducted in buffer solution with a concentration of 0.05 M:

    monochloroacetic acid (pH 2.0), sodium acetate (pH 5.0) and

    (tris)hydroxymethyl aminomethane (pH 9.0) to evaluate the pHeffect. To evaluate the effect of temperature, the isotherms were

    performed in non-buffered dye solution (pH 3.6) at 25 8C, 40 8C

    and 55 8C. After agitation, the solutions were centrifuged and the

    dye concentration was determined in a spectrophotometer at

    540 nm.

    The adsorption capacity (qe) was calculated according to Eq.(1)

    [22]:

    qe C0 Ce v

    m (1)

    where C0 and Ce (mg/L) are the initial and equilibrium dye

    concentrations in the liquid phase, respectively, v(L) is the volume

    of solution and m (g) is the amount of adsorbent.

    Regeneration and reuse of the adsorbent

    For the regeneration, 100 mg of the adsorbent saturated with a

    RR120 solutionwasused. Thedyewas removedwith50 mLof NaOH

    0.1 M. The dye concentration was determined as described

    previously. The adsorbent was then washed with HCl 0.01 M and

    distilled water to neutralize the excess NaOH and recondition theadsorbent. This procedure was repeated three times for each

    adsorption/regeneration cycle.

    Factorial analysis

    The studies using systems of factorial design of experiments

    were performed using the variables initial concentration (Ci), pH

    solution and agitation temperature. Table 1 shows the levels of the

    independent factors and experimental designs. The software

    Statistica1 version 6.0 was used to fit the experimental results

    from the factorial design, and the main effects and interactions

    between the factors were determined.

    Fixed-bed studies

    The fixed-bed column was made of polyethylene tube with an

    inner diameter of 0.75 cm and height of 5.5 cm. A sintered glass

    wasattachedto thebottom of the column. A knownquantity of the

    material was packed in the column to give the desired bed heights

    of the adsorbent: 17 mm, 36 mm and 64 mm. RR120 solution with

    concentration of 100 mg/L at non-buffered pH (3.6) was pumped

    through the column at a flow rate of 2.0 mL/min controlled by a

    peristaltic pump (Spectrovision, mod PP2).

    TheRR120 solutions at theoutletof thecolumn werecollected at

    regular time intervals. Aliquots were removed at certain time

    intervals, and the quantity of dye present in the effluent was

    spectrophotometrically determined at a wavelength of 540 nm. The

    amount of RR120 adsorbed was calculated based on the difference

    between theirinlet concentration(C0) andoutlet concentrations (Ct).The breakthroughcurves,which showed the performance of the

    fixed-bed column, were plotted in terms of normalized concen-

    tration, Ct/C0, (which is defined as the ratio of effluent dye

    concentration, Ct(mg/L), to inlet dye concentration,C0(mg/L)) as a

    function of time. The experimental curves were mathematically

    modeled using non-linear regression, and the parameters were

    estimated using the software OriginPro 8.5.

    Results and discussion

    Adsorption kinetic

    Thekinetic behavior of the adsorption process was studied with

    an initial concentration of 400 mg/L, pH 3.6 (non-buffered dye

    Table 1

    Matrix of factorial design and results of experiments.

    Experiment pH (A) Temperature (B) Ci(C) Amount adsorbed (mg/g)

    1 0 + 227.5

    2 0 0 0 169.6

    3 + 0 315.8

    4 + + 0 109.3

    5 0 + 312.8

    6 + 0 81.6

    7 0 + 246.48 0 286.4

    9 0 235.9

    10 + 0 96.0

    11 0 0 0 169.6

    12 0 0 0 169.6

    13 0 + + 255.3

    14 + 0 + 112.7

    15 0 208.1

    pH: 2(), 5(0), 8(); Temperature: 55 8C(+), 40 8C(0), 25 8C(); concentration: 300mg/L(), 400 mg/L(0), 500 mg/L(+).

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 13501358 1351

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    3/9

    solution), temperature 25 8C and with 25 mg of Ch-Fe. It can be

    observed fromFig. 1that RR120 uptake on Ch-Fe was a very fast

    process. The amount of adsorption increased rapidly in the first

    5 min, contributing to 80% of the total adsorption. This same

    behavior was observed for the adsorption of the acid dyes by a

    magnetic chitosanFe(III) hydrogel in alkaline condition[18].

    For examination of the controlling mechanisms of the adsorp-

    tion process, such as chemical reaction, diffusion control and mass

    transfer, several kinetic models were used to test the experimental

    data. The pseudo-first-order, pseudo-second-order and intrapar-

    ticle models in non-linear forms were used (Fig. 2). The pseudo-

    first-order model[25]is represented by Eq.(2):

    qt qe1 ek1t (2)

    where k1 (1/min) is the constant of the first order adsorption, qe(mg/g) is the amount of dye adsorbed at equilibrium andqt(mg/g)

    is the amount of dye adsorbed at time t(min).

    The pseudo-second-order model[26], is represented by Eq.(3).

    qt k2q

    2e t

    1 k2q2e t (3)

    wherek2(1/min) is the constant of the second order adsorption, qe(mg/g) is the amount of dye adsorbed at equilibrium andqt(mg/g)

    is the amount of dye adsorbed at time t(min).

    Another kinetic model used was the intraparticle diffusion[27]

    (Eq.(4))

    qt kit0:5 (4)

    where ki (mg/g min1/2) is the intraparticle diffusionconstant and qt(mg/g) is the amount of dye adsorbed at time t(min).

    Based on its calculatedqevalue of 254.2 mg/g, which is close to

    the experimental values, qex (269.9 mg/g), the pseudo-second-

    order equation kinetic was the best kinetic model to explain the

    adsorption process, indicating a chemisorption process. The

    pseudo-second-order kinetic model was also the best kinetic

    model observed for the other adsorbents in the adsorption of acid

    dyes[18,2831](Table 2).

    Adsorption isotherms

    Isotherm adsorption models are useful for predicting the

    adsorption parameters and optimizing the design of an adsorption

    system. The adsorption equilibrium isotherm data were studied

    using the Langmuir (Eq. (5)) [32], Freundlich (Eq. (6)) [33] and

    LangmuirFreundlich (Eq.(7))[34]models (Fig. 2). The non-linear

    form of the isotherm models are given as:

    qe KLqmCe1 KLCe

    (5)

    qe KFC1=n

    e (6)

    qe KLFqmC

    ne

    1 KLFCne(7)

    where Ce (mg/L) is the equilibrium concentration of RR120

    adsorbed and qe (mg/g) is the experimental adsorption capacity

    of RR120, Langmuir constants qm (mg/g) and KL (L/mg) are the

    monolayer adsorption capacity and affinity of adsorbent toward

    the adsorbate, respectively. Freundlich constantsKF(L/mg) and n

    give information on the extent of adsorption and the degree of

    nonlinearity between the adsorption and the solution concentra-

    tion, respectively. Absorption intensity is evaluated by the inverse

    ofn (1/n).

    The Langmuir and LangmuirFreundlich models indicate that

    the maximum adsorption capacity of RR120 (Table 3) increases asthe temperature increases, and decreases as the pH decreases. The

    adsorption mechanism of adsorption, in this case, is electrostatic

    interactions between the adsorption sites of the positively charged

    Ch-Fe (Fe3+) and the SO3 groups present in the dye RR120. In Ch-

    Fe crosslinked with glutaraldehyde, the free NH2 groups are not

    present due to a reaction with glutaraldehyde. As a result, non-

    specific interactions between the (NH3+) and sulfonate groups of

    [

    0 20 40 60 80 100 120

    0

    50

    100

    150

    200

    250

    300

    pseudo-first order

    pseudo-second order

    Intraparticle

    qt(mg/g)

    Time (min)

    Fig. 1. Adsorption kinetics of RR120 by Ch-Fe. RR120 concentration 400 mg/L

    (20 mL), 25 mg of Ch-Fe, pH 3.6, temperature 258C.

    [

    Fig. 2. Adsorption isotherms of the RR120 by Ch-Fe, temperature 25 8C, pH 5.0.

    Table 2

    Kinetic parameters of the adsorption of the dye RR120 by the Ch-Fe.

    Pseudo-first order Pseudo-second order Intraparticle

    k1(min) qe(mg/g) r2 k2 (g/mg min

    1/2) qe(mg/g) r2 C(mg/g) qe (mg/g) r

    2

    4.25 101 246.69 0.9766 3.85 103 254.20 0.9859 105.95 18.273 0.5938

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 135013581352

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    4/9

    the dye reported in the literature [29] are not possible. The

    increased adsorption capacity in acid pH can be explained by the

    competition between OH (present in a buffered medium) anddye

    on the Fe3+ binding sites of the adsorbent. Similar results were

    recently reported for the adsorption of anionic dyes [35]. This

    behavior usually occurs in adsorbent containing Fe3+ by the

    formation of Fe(OH)3 on the adsorbent surface.

    Comparing the different adsorption models, the results show

    that the model that was best correlated with the adsorptionprocess of RR120 by Ch-Fe was the LangmuirFreundlich model,

    because it showed higher correlation coefficients, when compared

    with the other two models. The LangmuirFreundlich model is a

    combination of the Freundlich and Langmuir models. This model

    assumes that at low concentrations of adsorbate, this model

    approaches the Freundlich model (which describes heterogeneous

    systems) and in high concentrations of adsorbate, provides

    monolayer adsorption capacity that is characteristic of the

    Langmuir isotherm.

    Table 4 shows a comparison of the maximum adsorption

    capacity of the dye RR120 of various adsorbents. The qe(mg/g) is

    according to the Langmuir model. The adsorbent Ch-Fe has a

    higher capacity than other adsorbents reported in the literature.

    Thermodynamic parameters

    The thermodynamic parameters, like change in Gibbs free

    energy (DG8, kJ/mol), enthalpy (DH8, kJ/mol), and entropy (DS8, J/

    mol K) were determined using Eqs.(8)(10)[44]:

    KD CsCe

    (8)

    DG RTln KD (9)

    ln KD

    DS

    R

    DH

    RT (10)

    where KD is the equilibrium constant, Cs is the amount of dye

    adsorbed (mg/g), Ce is the equilibrium concentration (mg/L), R is

    the universal gas constant (8.314 kJ/mol), and T is absolute

    temperature (K). By plotting a graph of lnKD versus 1/T, DH8

    and DS8values can be determined from the slopes and intercept,

    respectively.

    The results are shown in Table 5. The positive DS8 value

    indicates the increased degree of freedom of the system,

    suggesting randomness at the solid/liquid interface. The negative

    value ofDH8shows the adsorption to be exothermic. The negative

    values ofDG8demonstrate that the dye adsorption is spontaneous

    and that the system is not gaining energy from any external source

    [28].

    Regeneration and reuse of the adsorbent

    The regeneration of the adsorbent is important for lowering the

    cost of the adsorption process and for possibly recovering the

    pollutant extracted from wastewater [18]. Table 6 shows the

    results of RR120 desorption and adsorbent reuse. With the

    exception of the first cycle, there was no significant difference

    in the ability to remove the dye in cycles of adsorption/desorption.

    These results show that the adsorbent is stable when subjected to

    the process of removing and reconditioning by adding NaOH 0.5 M

    and HCl 0.01 M. The capacity of adsorption reduces slightly in each

    cycle, and in the last cycle, the reduction was 30%. Therefore, Ch-Fe

    can be easily regenerated and reused.

    Factorial analysis

    Thegoal of the factorial designwas to findthe parameters of the

    process that have a significant influence on the process, and to find

    Table 3

    Study of temperature and pH variation on the adsorption isotherms of the dye RR120.

    Langmuir Freundlich LangmuirFreundlich

    KL(L/g) qm(mg/g) r2 KF(L/g) n r

    2 KLF(L/g) qm(mg/g) n r2

    T(8C)a

    25 0.3920 290.70 0.8117 111.10 0.219 0.8417 0.3102 433.84 0.427 0.8473

    40 0.3747 331.35 0.7547 131.67 0.207 0.6800 0.0033 309.94 7.241 0.8487

    55 0.5224 361.96 0.8543 230.68 0.095 0.7465 0.0135 350.42 3.250 0.9882

    pHb

    2.0 0.4657 336.77 0.7972 192.38 0.120 0.9579 0.7198 380.57 0.486 0.8946

    5.0 0.4387 230.08 0.9399 100.16 0.177 0.9605 0.4403 283.57 0.493 0.9908

    9.0 0.0503 135.69 0.8484 36.635 0.229 0.9382 1.393 14.756 0.0381 0.9353

    a pH 3.6 non-buffered dye solution.b Temperature 25 8C.

    Table 4

    Comparison of different sorbents in the adsorption of textile dye RR120. Maximum

    adsorption capacity calculated with the Langmuir model.

    Adsorbent qe(mg/g) Reference

    Ch-Fe 361.9 In this study

    Chitosan/modified montmorillonite 5.6 [36]

    Commercial activated carbon 293.1 [37]

    Jatropha curcasshells 42.5 [38]

    Chara contraria 112.8 [39]

    Activated carbonaceous Brazilian pine-fruit-shell 275.0 [40]

    nanoparticles of Fe3O4 166.67 [41]

    Cetylpyridiniun-Bentonite 81.97 [42]

    Pistachio husk 324.88 [43]

    Table 5

    Thermodynamic parameters for the adsorption of RR120 on the Ch-Fe.

    DS8(J/molK) DH8 (kJ/mol) DG8(kJ/mol)

    248.32 71.2 2.80 (25 8C)

    6.46 (408C)

    10.26 558C

    Table 6

    Desorption of RR120 and reuse of Ch-Fe. Dye concentration 500 mg/L; volume of

    solution 80 mL, 100 mg of adsorbent; temperature 55 8C, pH 3.6, contact time

    60min.

    Cycle RR120 adsorbed (mg/g) Desorption (%)

    1 361.2 57.7

    2 321.8 81.4

    3 304.1 83.4

    4 249.3 84.8

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 13501358 1353

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    5/9

    the setting valuesof the principal parameters forsetting theresults

    of the process on the desired values [45].

    The matrix codes used for the factorial design, and the results,

    are shown inTable 1. The effects, standard error, tvalue,p value,

    errors of coefficients and regression coefficient are shown in

    Table 7.

    The quadratic model was used for the initial calculation of the

    regression

    Qe b0 b1xA b2x2

    A b3xB b4x2B b5xC b6x

    2C

    b7xAxB b8xAxC b9xBxC (11)

    where b0 is the global mean, bi represents the regression

    coefficient relating to the main factor effects and interactions,

    and A, B and C represent the pH, temperature and initial

    concentration, respectively.

    Replacing the bi coefficients with their respective values

    (Table 6), it was possible to derive an equation model linking

    the parameters to the adsorption of the dye RR120.

    Qe 207:2 187:4pH 8:15pH2 17:9T 40:3T2

    43:2Ci 24:4Ci2 8:25pHT

    22:3pHCi 5:25CiT

    (12)

    The values of the effects of principal factors are shown in the

    Pareto graph in Fig. 3 (horizontal columns). To indicate the

    minimum statistically significant effect, for p= 0.05, a vertical line

    was drawn. The linear factors pH (A), quadratic factor temperature

    (B2), initial concentration (C) and quadratic factor initial concen-

    tration (C2) are the most significant. The graph shows that the

    effect of pH is the most important effect, followed by the

    temperature.

    Fig. 4shows the graphs, constructed using the surface response

    method that correlates with the initial concentration factors

    temperature pH (Fig. 4A), (Ci) pH (Fig. 4B) and Ci tempera-

    temperature (Fig. 4C). The experiments that resulted in Fig. 4A

    were conducted with an initial concentration of 400 mg/L, and the

    pH in this condition is an essential factor in determining the

    amount of dye adsorbed. In the case ofFig. 4B, the experiments

    were conducted at a constant temperature of 40 8C, and pH was

    also a major factor responsible for the adsorption of the dye. Theexperiments that resulted inFig. 4C were conducted at pH 5.0 and

    in this case, Ci and temperature had no significant effect on

    adsorption of the dye.

    Fixed-bed studies

    The objective of using a fixed-bed system is to reduce the

    concentration of a substance that is considered, by the government

    agencies, to be polluting up to a predetermined value. At the

    beginning of the adsorption operation, when the sorbent material

    is still unused, thefinalconcentrationis actually lower than what is

    permitted by the regulatory agencies, but as adsorption proceeds

    and the sorbent material gradually becomes saturated, the effluent

    concentration increases and reaches the so-called breakthroughpoint, or breakdown of the efficiency of the column [46].

    The desired breakthrough volume (Vb) was determined at 5% of

    the inlet solution concentration. The flow through the tested

    column was continued until the RR120 concentration of the

    column effluent approached 95% of the influent solution concen-

    tration, indicating the exhaustion volume (Ve).

    The capacity at exhaustion was determined by calculating the

    total area below the breakthrough curve (plot of Ct/C0 against t

    (min)). The column capacity was estimated by Eq.(13)[47].

    qtotal

    Z ve

    vb

    CECBdQ

    x (13)

    where qtotalis the column capacity adsorption (mg),CBand CEare

    breakthrough and exhaustion RR120 concentration (mg/L) respec-tively,Qis the flow rate in (mL/min) and x is the Ch-Fe mass (g).

    The value of adsorption capacity, determined experimentally,

    qe(exp)(mg/g) is calculated as follows[48]:

    qeexp qtotal

    x (14)

    wherex(g) is the total dry weight of the adsorbent in the column.

    The breakthrough curves of the (Ct/C0) versus time for various

    bed depth of 17, 34 and 66 mm (150, 100 and 150 mg), at a

    constant flow rate of 2 mL/min and RR120and initial concentration

    of 100 mg/L, areshownin Fig. 5. From Fig. 5, thebreakthrough time

    and exhaustion time increased with the increase in bed depth. As

    the bed depth (Ch-Fe mass) and number of active sites of

    adsorption (Fe

    3+

    ) increased, RR120 had more time to contact with

    Table 7

    Effect estimated coefficients for the adsorption of the dye RR120.

    Effect Standard error Effect Tvalue Pv alue Coefficient Standa rd e rro r of coefficient

    Interactions media 207.18 2.823407 73.380 0.000000 207.18 2.823407

    pH 187.47 6.915906 27.108 0.000001 93.738 3.457953

    pH2 8.150 5.089969 1.6012 0.170234 4.0750 2.544984

    T 17.900 6 .915906 2.5882 0.048941 8.9500 3.457953

    T2 40.325 5.089969 7.9224 0.000516 20.1625 2.544984

    Ci 43.225 6.915906 6.2501 0.001537 21.6125 3.457953

    Ci2

    24.200 5.089969 4.7544 0.005084 12.1000 2.544984pH T 8.250 9.780567 0.8435 0.437425 4.1250 4.890284

    pH Ci 22.300 9.780567 2.2800 0.071535 11.1500 4.890284

    T Ci 5.250 9.780567 0.5368 0.614435 2.6250 4.890284

    R2 = 0.99431;R2 adjusted 0.98406.

    [

    Fig. 3. Pareto graph of the effects.

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 135013581354

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    6/9

    Ch-Fe, resulting in higher removal efficiency of RR120 in the

    column. The higher bed depth therefore resulted in a decrease in

    the effluent concentration at the same service time. The

    parameters shown inTable 8 Vband Ve depend on the higherof the bed and increased with bed depth. High adsorption capacity

    in breakthrough (qb) and adsorption capacity in exhaustion (qe)

    were observed at the highest bed depth, due to an increase in the

    surface area of adsorbent, providing more binding sites for the

    adsorption.

    The success of the column design for the adsorption process

    requires predicting the effect profile concentration-time curves of

    the effluents. Over the years, various mathematical models have

    been developed to analyze the column studies in the laboratory, inorder to plan columns on an industrial scale. This study applies the

    mathematical models of Thomas, Adams-Bohart and Clark in non-

    linear forms.

    The Adams-Bohart model is used to describe the initial part of

    the breakthrough curve. This model assumes that the adsorption

    rate is proportional to both the residual capacity of the adsorbent

    and the concentration of the adsorbing species, and is expressed as

    [49]

    CtC0

    exp kABC0t kABN0Z

    F

    (15)

    where C0 is the inlet concentration (mg/L), Ct is the exit outlet

    concentration (mg/L), kAB is the mass transfer coefficient (L/

    [

    Fig. 4.Surface response amount adsorbed (mg/g). (A) Effect of temperature and pH. (B) Effect of the initial concentration ( Ci) and pH. (C) Effect ofCiand temperature. In all

    experiments, the agitation time (1 h) and the amount of adsorbent (25 mg) and volume of solution (20 mL) were kept constant.

    Table 8

    Column data and parameters obtained at different bed heights on the adsorption of

    the dye RR120. Initial concentration 100mg/L, flow rate 2 mL/min.

    Bed height (mm) 17 36 64

    Vb(mL) 60 80 350

    Ve (mL) 340 600 850

    qb(mg/g) 60 80 350

    qe (mg/g) 250 510 680

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 13501358 1355

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    7/9

    mg min), N0 is the saturation concentration (mg/L), Z is the bedheight (cm) and F is the linear velocity (1/cm).

    Plotting Ct/C0 against t also gave the breakthrough curves

    predicted by the Bohart-Adams model (Fig. 5C), and the

    experimental points. For all breakthrough curves using non-

    linear regression analysis, respective values of KAB and N0were calculated and are presented in Table 9, along with

    the correlation coefficients (r2). Table 9 also shows that the

    values of KAB and N0 increased with increasing bed depth.This shows that the overall system kinetics was dominated

    by external mass transfer in the initial part of adsorption in

    the column [48].

    Another model that was employed is the Thomas model, which

    is one of the most widely used models in column performance

    theory. The Thomas model is based on the assumption that the

    process follows Langmuir kinetics with no axial dispersion.

    [

    -50 0 50 100 150 200 250 300 350 400 450

    -0,1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1,1

    (A)

    50 mg

    100 mg

    150 mg

    C

    t/C

    0(mg/L)

    Time (min)

    -50 0 50 100 150 200 250 300 350 400 450

    -0,1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1,1

    (B)

    50 mg

    100 mg

    150 mg

    Ct/

    C0

    (mg/L)

    Time (min)

    -50 0 50 100 150 200 250 300 350 400 450

    -0,1

    0,0

    0,1

    0,2

    0,3

    0,4

    0,5

    0,6

    0,7

    0,8

    0,9

    1,0

    1,1

    1,2

    (C)

    50 mg

    100 mg

    150 mg

    Ct/

    C0

    (mg/L)

    Time (min)

    Fig. 5. Comparison of fitted curves and experimental data, Thomas (A), Clark (B), Adams-Bahort (C). Initial concentration 100 mg/L, flow rate 2 mL/min.

    Table 9

    Thomas, Adams-Bahort and Clark models constants at different bed heights. Initial concentration 100 mg/L, flow rate 2 mL/min.

    Thomas

    Bed height (mm) KTh(mL/mgmin) qe (mg/g) r2 x2 SSE

    17 0.4384 136.48 0.9463 0.00631 0.17663

    36 0.1338 363.65 0.9019 0.00633 0.29138

    64 0.1524 671.79 0.9802 0.00136 0.08857

    Adams-Bahort

    Bed height (mm) kAB(L/mg/min) N0 (mg/L) r2 x2 SSE

    17 0.0920 73.11 0.7413 0.85121 0.07187

    36 0.0592 150.15 0.8009 0.59148 0.04666

    64 0.0837 200.39 0.9438 0.25171 0.08698

    Clark

    Bed height (mm) A KC(1/min) n r2 x2 SSE

    17 43.84 0.0639 2.1 0.9782 0.00104 0.04666

    36 34.47 0.0294 2.4 0.9843 0.00266 0.07187

    64 185.81 0.0160 2.1 0.9806 0.00136 0.08698

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 135013581356

  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    8/9

    The Thomas model has the following form[50]:

    CtC0

    1

    1 expKThqex=Q C0t (16)

    where Qis the flow rate in (mL/min),x the adsorbent mass (g), qe is

    the maximum adsorption capacity (mg/g) and KTh is the velocity

    constant (mL/mg min).

    Plotting Ct/C0 against t also gave the breakthrough curves

    predicted by the Thomas model (Fig. 5A), and the experimentalpoints. It can be clearly seen in Table 9 that as the bed depth

    increased, the value ofKThdecreased and the value ofqeincreased.

    The high values of correlationr2 (>0.90) calculated for the tested

    parameters suggest that the Thomas model can satisfactorily

    describe the adsorption of RR120 in the fixed bed column Ch-Fe.

    The Thomas model is suitable for adsorption processes where the

    external and internal diffusions are not the limiting step [48].

    Adsorption capacity depended mainly on the amount of adsorbent

    available for adsorption. The breakthrough time and exhaustion

    time increased with the increase in bed height, since more time

    was required to exhaust more adsorbent.

    Another model developed by Clark was based on the use of a

    mass-transfer concept, but in the form of the Freundlich

    adsorption equation[51]:

    CtC0

    1

    1 AeKct

    1=n1(17)

    where n is the Freundlich adsorption constant,A is the Clark model

    constant, andKCis the adsorption rate (mg/L min). Based on a plot

    of Ct/C0 against t at a given bed height, and flow rate using

    nonlinear regressive analysis, the values of A and KC can be

    obtained[51]. In bath studies, the adsorption does not follow the

    Freundlich model (poor correlation coefficients), and the Freun-

    dlich constantnwas estimated by nonlinear regression along with

    the parameters A and KC in the Clark model.

    Plotting Ct/C0 against t also gave the breakthrough curves

    predicted by the Clark model and the experimental points, as

    shown in Fig. 5B. As shown in Table 9, the values of the rate of masstransferKcdecreased as the bed depth increased. This is due to the

    increase in the amount of adsorbent available for interactions,

    resulting in a reduction in the mass transfer rate [52]. From the

    experimental results and data regression, the model proposed by

    the Clark model provided good correlation on the effects of bed

    depth.

    Comparison of the Bohart-Adams, Clark and the Thomas models

    The coefficient of determination (r2), non-linear chi-square test

    x2 (Eq.(18)), and sum square errors (SSE) (Eq. (19)), were used to

    determine the best-fit model:

    x2

    Xn1l

    qe;calc qe;exp

    qe;meas

    2

    (18)

    SSEXnil

    qe;calc qe;exp2i (19)

    whereqe,calis the amount of dye adsorbed in equilibrium (mg g1)

    calculated by the mathematical model and qe,expis the amount of

    dye adsorbed in equilibrium (mg g1).

    Among the Bohart-Adams, Clark and the Thomas models, the

    values ofr2 from the Clark model andthe Thomas model are higher

    than those of the Bohart-Adamsmodel. The SSEandx2 forthe Clark

    model was the lowest for all the experimental conditions shown in

    Table 9. In all the conditions examined, the predictedbreakthrough

    curves from the Clark model showed reasonably better agreement

    with the experimental curves than the Thomas and Bohart-Adams

    models, as shown inFig. 5. Thus, it was concluded that the Clark

    model was better able to predict the RR120 adsorption on CH-Fe

    column than the Thomas and Bohart-Adams models.

    Conclusions

    Ch-Fe has high capacity for adsorption of the dye RR120, both

    batch (380 mg/g) and fixed-bed (680 mg/g). The adsorption wasimproved by decreasing the pH and increasing temperature. The

    adsorption kinetics follows the pseudo-second-order. In bath

    studies follows the LangmuirFreundlich model and in fixed-bed

    studies, can be explainedby the Clark model. The adsorbent proved

    to be stable enough to enable its regeneration and reuse. The

    results of thefactorial designshowed that pH is theprincipal factor

    in the process of adsorption of the RR120 by the Ch-Fe.

    Acknowledgements

    The authors would like to thank CAPES (Brazilian Agency for

    Improvement of Graduate Personnel) and CNPq (National Council

    of Science and Technological Development) for the financial

    support.

    References

    [1] P. Sharma, H. Kaur, M. Sharma, V. Sahore, A review on applicability of naturallyavailable adsorbents for removal of hazardous dyes from aqueouswaste, Environ.Monit. Assess. 183 (2011) 151195.

    [2] B.Balci,O. Keskinkan, M.Avci,Useof BDST andan ANNmodel forpredictionof dyeadsorption efficiency of Eucalyptus camaldulensis barks in fixed-bed system,Expert Syst. Appl. 38 (2011) 949956.

    [3] D.S. Brookstein, Factors associated with textile pattern dermatitis caused bycontact allergy to dyes, finishes, foams, and preservatives, Dermatol. Clin. 27(2009) 309322.

    [4] P.A. Carneiro, G.A. Umbuzeiro, D.P. Oliveira, M.V.B. Zanoni, Assessment of watercontamination caused by a mutagenic textile effluent/dyehouse effluent bearingdisperse dyes, J. Hazard. Mater. 174 (2010) 694699.

    [5] L. Wang, J. Li, Adsorption of C.I. Reactive Red 228 dye from aqueous solution by

    modified cellulose from flax shive: kinetics, equilibrium, and thermodynamics,Ind. Crop. Prod. 42 (2013) 153158.

    [6] K.M. Doke, E.M. Khan, Adsorption thermodynamics to clean up wastewater;critical review, Rev. Environ. Sci. Biotechnol. 12 (2013) 2544 .

    [7] M. Sharma, R.K. Vyas, K. Singh, A review on reactive adsorption for potentialenvironmental applications, Adsorption 19 (2013) 161188.

    [8] G.L. Dotto, M.L.G. Vieira, L.A.A. Pinto, Kinetics and mechanism of tartrazineadsorption onto chitin and chitosan, Ind. Eng. Chem. Res. 51 (2012) 68626868.

    [9] A. Pal, S. Pan, S. Saha, Synergistically improved adsorption of anionic surfac-tant and crystal violet on chitosan hydrogel beads, Chem. Eng. J. 217 (2013)426434.

    [10] L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang, Adsorption of acid dyes from aqueoussolutions by the ethylenediamine-modified magnetic chitosan nanoparticles, J.Hazard. Mater. 185 (2011) 10451052.

    [11] I.M. Ahmed, M.S. Gasser, Adsorption study of anionic reactive dye from aqueoussolution to MgFeCO3 layered double hydroxide (LDH), Appl. Surf. Sci. 259(2012) 650656.

    [12] E. Rosales, O. Iglesias, M. Pazos, M.A. Sanroman, Decolourisation of dyes underelectro-Fenton process using Fe alginate gel beads, J. Hazard. Mater. 213 (2012)

    369377.[13] J. Trujillo-Reyes, M. Solache-Ros, A.R. Vilchis-Nestor, V. Sanchez-Mendieta, A.

    Coln-Cruz, FeNi nanostructures and c/FeNi composites as adsorbents for theremoval of a textile dye from aqueous solution, Water Air Soil Pollut. 223 (2011)13311341.

    [14] A.C. Zimmermann, A. Mecabo, T. Fagundes, C.A. Rodrigues, Adsorption of Cr(VI)usingFe-crosslinkedchitosan complex (ChFe), J. Hazard. Mater. 179 (2010)192196.

    [15] C. Shen, H. Chen, S. Wu, Y. Wen, L. Li, Z. Jiang, M. Li, W. Liu, Highly efficientdetoxification of Cr(VI) by chitosanFe(III) complex: process and mechanismstudies, J. Hazard. Mater. 244 (2013) 689697.

    [16] H.H. Santos,C.A. Demarchi,C.A. Rodrigues, J.M. Greneche,N. Nedelko, A.S lawska-Waniewska, Adsorption of As(III) on chitosanFe-crosslinked complex (Ch-Fe),Chemosphere 82 (2011) 278283.

    [17] T. Fagundes, A.W.L. Bachmann, H.S.O. Tomaz, C.A. Rodrigues, Adsorcao deArsenio(V) pela quitosana ferro-III reticulada, Quim. Nova 31 (2008) 13051309.

    [18] C. Shen, Y.Shen, Y.Wen, H.Wang,W. Liu, Fast andhighly efficient removal ofdyesunder alkaline conditions using magnetic chitosanFe(III) hydrogel, Water Res.

    45 (2011) 52005210.

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 13501358 1357

    http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0030http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0030http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0035http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0035http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0040http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0040http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0090http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0085http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0080http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0075http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0070http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0065http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0060http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0055http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0050http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0045http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0040http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0040http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0035http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0035http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0030http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0030http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0025http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0020http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0015http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0010http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0005
  • 8/10/2019 cpia de 1-s2.0-S2213343713001978-main.pdf

    9/9

    [19] A. Debrassi, T. Baccarin, C.A. Demarchi, N. Nedelko, A. Slawska-Waniewska, K.Sobczak, P. Duzewski, M. Bilska, C.A. Rodrigues, Adsorption of Remazol Red 198onto magneticN-lauryl chitosan particles: equilibrium, kinetics, reuse and facto-rial design, Environ. Sci. Pollut. Res. 19 (2012) 15941604 .

    [20] H-Y. Zhu, Y-Q. Fu, R. Jiang, J. Yao, L. Xiao, G.-M. Zeng, Novel magnetic chitosan/poly(vinylalcohol) hydrogel beads: preparation, characterization and applicationfor adsorption of dye from aqueous solution, Bioresour. Technol. 105 (2012)2430.

    [21] N.A. Travlou, G.Z. Kyzas, N.K. Lazaridis, E.A. Deliyanni, Functionalization ofgraphite oxide with magnetic chitosan for the preparation of a nanocompositedye adsorbent, Langmuir 29 (2013) 16571668.

    [22] H. Yan, H. Li, H. Yang, A. Li, R. Cheng, Removal of various cationic dyes fromaqueous solutions using a kind of fully biodegradable magnetic compositemicrosphere, Chem. Eng. J. 223 (2013) 402411.

    [23] M.T. Klepka, N. Nedelko, J.M. Greneche, K. Lawniczak-Jablonska, I.N. Demchenko,A. Slawska-Waniewska, C.A. Rodrigues, A. Debrassi, C. Bordini, Local atomicstructure and magnetic ordering of iron in Fechitosan complexes, Biomacro-molecules 9 (2008) 15861594.

    [24] V. Ponnusami, V. Gunasekar, S.N. Srivastava, Kinetics of methylene blue removalfrom aqueous solution using gulmohar (Delonix regia) plant leaf powder: multi-variate regression analysis, J. Hazard. Mater. 169 (2009) 119127 .

    [25] Y. Liu, Y.J. Liu, Biosorption isotherms, kinetics and thermodynamics, Sep. Pur.Technol. 61 (2008) 229242.

    [26] Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, ProcessBiochem. 34 (1999) 451465.

    [27] W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit.Eng. Div. 89 (1963) 3160.

    [28] N.M. Mahmoodi, B. Hayati, M. Arami, C. Lan, Adsorption of textile dyes on Pinecone from colored wastewater: kinetic, equilibrium and thermodynamic studies,Desalination 268 (2011) 117125.

    [29] G.L. Dotto,L.A.A. Pinto,Adsorption of food dyes acid blue 9 andfood yellow3 ontochitosan: stirring rate effect in kinetics and mechanism, J. Hazard. Mater. 187(2011) 164170.

    [30] G.J. Copello, A.M. Mebert, M. Raineri, M.P. Pesenti, L.E. Diaz, Removal of dyes fromwater using chitosan hydrogel/SiO2 and chitin hydrogel/SiO2 hybrid materialsobtained by the solgel method, J. Hazard. Mater. 186 (2011) 932939.

    [31] C.Y. Chen, J.C. Chang, A.H. Chen, Competitive biosorption of azo dyes fromaqueous solution on the template crosslinked-chitosan nanoparticles, J. Hazard.Mater. 185 (2011) 430441.

    [32] I.Langmuir,The adsorption of gaseson plane surfacesof glass,micaand platinum,J. Am. Chem. Soc. 40 (1918) 13611403.

    [33] H.M.F.Freundlich,Overthe adsorptionin solution,J. Phys.Chem.57 (1906)385471.[34] R. Sips, On the structure of a catalyst surface II, J. Chem. Phys. 18 (1950)

    10241027.[35] L.G. Silva,R. Ruggiero,P.M.Gontijo,R.B.Pinto, B.Royer,E.C.Lima,T.H.M.Fernades,

    T. Calvete, Adsorption of Brilliant Red 2BE dye from water solutions by achemicallymodified sugarcane bagasse lignin, Chem.Eng. J. 168 (2011) 620628.

    [36] S. Kittinaovarat, P. Kansomwan, N. Jiratumnukul, Chitosan/modified montmoril-lonite beads and adsorption Reactive Red 120, Appl. Clay Sci. 48 (2010) 8791.

    [37] N.F. Cardoso, E.C. Lima, B. Royer, M.V. Bach, G.L. Dotto, L.A.A. Pinto, T. Calvete,ComparisionofSpirulina platensis microalgae and commercialactivated carbonasadsorbents for the removal of Reactive Res 120 dye from aqueous effluents, J.Hazard. Mater. 241 (2010) 146153.

    [38] L.D.T. Prola, E. Acayanka, E.C. Lima, C.S. Umpierres, J.C.P. Vaghetti, W.O. Santos, S.Laminsi, P.T. Djifon, Comparison of Jatropha curcas shells in natural form andtreated by non-thermal plasma as biosorbents for removal of Reactive Red 120textile dye from aqueous solution, Ind. Crop. Prod. 46 (2013) 328340.

    [39] A. Celeklia, G. Ilguna, H. Bozkurtb, Sorption equilibrium, kinetic, thermodynamic,and desorption studies of Reactive Red 120 onChara contraria, Chem. Eng. J. 191(2012) 228235.

    [40] T. Calvete, E.C. Lima, N.F. Cardoso, S.L.P. Dias, F.A. Pavan, Application of carbonadsorbents prepared from Brazilian pine-fruit-shellfor the removal o Procion RedMX 3B from aqueous solutionkinetic, equilibrium, and thermodynamic studies,Chem. Eng. J. 155 (2009) 627636.

    [41] G. Absalan, M. Asadia, S. Kamrana, L. Sheikhiana, D.M. Goltz, Removal of reactivered-120 and 4-(2-pyridylazo) resorcinol from aqueous samples by Fe3O4 mag-netic nanoparticles using ionic liquid as modifier, J. Hazard. Mater. 192 (2011)476484.

    [42] A. Tabak, N. Baltas, B. Afsin, M. Emirik, B. Caglar, E. Eren, Adsorption of ReactiveRed 120 from aqueous solutions by cetylpyridinium-bentonite, J. Chem. Technol.Biotechnol. 85 (2010) 11991207.

    [43] A.Celekli, M.Yavuzatmaca,H. Bozkurt, Modeling theremoval of Reactive Red120on Pistachio husk, Clean 38 (2010) 173180.

    [44] S. Chatterjee, S. Chatterjee, B.P. Chatterjee, A.R. Das, A.K. Guha, Adsorption of amodel anionic dye, eosin Y, from aqueous solution by chitosan hydrobeads,Colloid. Interface Sci. 288 (2005) 3035.

    [45] M. Ciopec, C.M. Davidescu, A. Negrea, I. Grozav, L. Lupa, P. Negrea, A. Popa,Adsorption studies of Cr(III) ions from aqueous solutions by DEHPA impregnatedonto Amberlite XAD7factorial design analysis, Chem. Eng. Res. Des. 90 (2012)

    16601670.[46] E.A. Deliyanni, E.N. Peleka, K.A. Matis, Modeling the sorption of metal ions from

    aqueous solution by iron-based adsorbents, J. Hazard. Mater. 172 (2009)550558.

    [47] Y.S.Al-Degs, M.A.M. Khraisheh, S.J. Allen,M.N. Ahmad, Adsorption characteristicsof reactive dyes incolumns of activatedcarbon, J. Hazard.Mater. 165(2009) 944949.

    [48] Z. Aksu, F. Gonen, Biosorption of phenol by immobilized activated sludge in acontinuous packed bed: prediction of breakthrough curves, Process Biochem. 39(2004) 599613.

    [49] G. Bohart, E.Q. Adams, Some aspects of the behaviour of charcoal with respect tochlorine, J. Am. Chem. Soc. 42 (1920) 523544.

    [50] H.C. Thomas, Heterogeneous ion exchange in a flowing system, J. Am. Chem. Soc.66 (1944) 16641666.

    [51] R.M. Clark, Evaluating the cost and performance of field-scale granular activatedcarbon systems, Environ. Sci. Technol. 21 (1987) 573580.

    [52] E.I. Unuabonah, M.I. El-Khaiary, B.I. Olu-Owolabi, K.O. Adebowale, Predicting thedynamics and performance of a polymerclay based composite in a fixed bedsystemfor theremoval of lead (II) ion, Chem.Eng. Res. Des. 90 (2012)11051115.

    C.A. Demarchi et al./ Journal of Environmental Chemical Engineering 1 (2013) 135013581358

    http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0125http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0125http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0130http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0130http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0135http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0135http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0160http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0160http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0165http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0170http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0170http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0180http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0180http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0215http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0215http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0245http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0245http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0250http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0250http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0255http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0255http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0260http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0255http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0255http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0250http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0250http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0245http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0245http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0240http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0235http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0230http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0225http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0220http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0215http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0215http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0210http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0205http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0200http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0195http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0190http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0185http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0180http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0180http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0175http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0170http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0170http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0165http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0160http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0160http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0155http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0150http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0145http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0140http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0135http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0135http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0130http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0130http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0125http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0125http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0120http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0115http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0110http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0105http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0100http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095http://refhub.elsevier.com/S2213-3437(13)00197-8/sbref0095