Influencia del laboreo y del sistema de cultivo en el...

179
Universitat de Lleida Influencia del laboreo y del sistema de cultivo en el secuestro de carbono orgánico en el suelo en agroecosistemas semiáridos del valle del Ebro TESIS DOCTORAL Jorge Álvaro Fuentes Zaragoza, 2006 Jorge Álvaro Fuentes Tesis Doctoral 2006 Estación Experimental de Aula Dei Consejo Superior de Investigaciones Científicas

Transcript of Influencia del laboreo y del sistema de cultivo en el...

Page 1: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Universitat de Lleida

Influencia del laboreo y del sistema de

cultivo en el secuestro de carbono orgánico

en el suelo en agroecosistemas semiáridos

del valle del Ebro

TESIS DOCTORAL

Jorge Álvaro Fuentes

Zaragoza, 2006

Jorg

e Á

lvar

o Fu

ente

sTe

sis

Doc

tora

l20

06

Estación Experimental de Aula Dei

Consejo Superior de Investigaciones Científicas

Page 2: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Consejo Superior de Investigaciones Científicas

Universitat de Lleida

TESIS DOCTORAL

Influencia del laboreo y del sistema de cultivo en el secuestro de carbono orgánico en el suelo en agroecosistemas semiáridos del

valle del Ebro

Estación Experimental de Aula Dei

Departamento de Suelo y Agua

Jorge Álvaro Fuentes Zaragoza 2006

Page 3: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Este trabajo de investigación ha sido realizado gracias a una beca del Plan Nacional de

Formación de Personal Investigador (Ministerio de Educación y Ciencia) adscrita al

Proyecto de Investigación AGL2001-2238-CO2-01.

Page 4: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

José Luis Arrúe Ugarte, Investigador Científico, y María Victoria López Sánchez,

Científica Titular, del Consejo Superior de Investigaciones Científicas (CSIC) en la

Estación Experimental de Aula Dei,

CERTIFICAN:

Que Don Jorge Álvaro Fuentes ha realizado bajo nuestra dirección el trabajo que, para

optar al grado de Doctor Ingeniero Agrónomo, presenta con el título:

Influencia del laboreo y del sistema de cultivo en el secuestro de carbono orgánico en el suelo en agroecosistemas semiáridos del valle del Ebro

Y para que así conste, firmamos la presente Certificación en Zaragoza a veintisiete de

noviembre de dos mil seis.

Fdo.: José Luis Arrúe Ugarte Fdo.: María Victoria López Sánchez

Page 5: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en
Page 6: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Carlos Cantero Martínez, Profesor Titular de Universidad en la Escuela Técnica

Superior de Ingeniería Agraria de la Universidad de Lleida

CERTIFICA:

Que Don Jorge Álvaro Fuentes ha realizado bajo mi tutela, como ponente en el

Departamento de Producción Vegetal y Ciencia Forestal de la Universidad de Lleida, el

trabajo que, para optar al grado de Doctor Ingeniero Agrónomo, presenta con el título:

Influencia del laboreo y del sistema de cultivo en el secuestro de carbono orgánico en el suelo en agroecosistemas semiáridos del valle del Ebro

Y para que así conste, firmo la presente Certificación en Lleida a veintisiete de

noviembre de dos mil seis.

Fdo.: Carlos Cantero Martínez

Page 7: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en
Page 8: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

A mis padres y a Vero, mi hermana,

que me enseñaron a andar

Page 9: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en
Page 10: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Agradecimientos

Después de estos cuatro años, son varias las personas a las que me gustaría dar las gracias a

través de estas sinceras palabras.

A mis directores de Tesis los Drs. José Luís Arrúe y María Victoria López por toda su ayuda y

disponibilidad y, sobretodo, por confiar, desde un primer momento, en mí.

Al Dr. Carlos Cantero por tutorar y codirigir (a todos mis efectos) esta Tesis pero, sobretodo,

por sus enseñanzas y amistad.

Al Dr. Keith Paustian y a la Dras. Karolien Denef y Catherine Stewart, así como a toda la gente

del Natural Resource Ecology Laboratory (NREL) y al resto de amigos de la Colorado State

University, por todas las buenas experiencias vividas durante todo el tiempo con ellos.

A la Dra. María José Molina y a Lourdes Tellols por toda su amabilidad durante la estancia

llevada a cabo en el Centro de Investigaciones sobre Desertificación (CIDE) de Valencia.

A los Drs. Josep María Alcañiz y Oriol Ortiz del Centre de Recerca Ecològica y Aplicacions

Forestals (CREAF) de la Universidad Autónoma de Barcelona por su ayuda sobre microbiología

de suelos.

A Pepa, Ricardo, Bea, Zoila y Rebeca por toda la ayuda y esfuerzo invertido en esta Tesis, así

como a David por todos sus consejos. Al resto del Departamento de Edafología de la Estación

Experimental de Aula Dei (Maribel, Tere L., Tere G., Manuel, Ana y Javier) por hacerme sentir

como en casa durante todo este tiempo.

A todo el personal de la Casa de Labor, del Servicio de Biblioteca, de mantenimiento y de

Administración de la Estación Experimental de Aula Dei, por toda su ayuda y por hacer más

fácil el trabajo. Así como también al resto de becarios, contratados y demás personal,

especialmente a mis compañeros de despacho, Mari Carmen y Afif, y a mi ex- compañero de

casa y amigo Rubén.

A la gente del Grupo de Agronomía del Departamento de Producció Vegetal i Ciència Forestal

de la Universidad de Lleida y en especial a Carlos Cortés y a Silvia Martí por toda su ayuda.

A todos mis familiares y amigos que en todo momento han estado preguntando por esta Tesis y,

muy especialmente, a los otros dos “mosqueteros”, Dani y Santi, a Nacho, “el poeta”, y a Curro,

mi fiel compañero de viajes y aventuras.

A Sofi por aceptar ese contrato en el Departamento de Edafología de la Estación Experimental

de Aula Dei. Por ser parte fundamental de todo esto pero, sobretodo, por tener la suerte de poder

levantarme cada mañana a su lado.

A mis padres y a mi hermana, por todo. A ellos va dedicada esta Tesis.

i

Page 11: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Resum L’objectiu principal d’aquest estudi va ser l’avaluació dels efectes de la intensificació dels sistemes de cultiu i dels sistemes de treball del sòl sobre el segrest i estabilització del C orgànic en el sòl, així com sobre els factors que controlen l’esmentada estabilització i el rol de l’agregació del sòl en el segrest de C, en agroecosistemes semiàrids de secà de la vall de l’Ebre. Per tal d’assolir aquest objectiu es van seleccionar tres experiments de laboreig de llarga durada localitzats a: Selvanera (província de Lleida), Agramunt (província de Lleida) i Peñaflor (província de Saragossa). A l’assaig de Selvanera, amb 475 mm de precipitació mitja anual i sòl classificat com Xerocrept fluventic, es van comparar quatre sistemes de laboreig (laboreig convencional, mínim laboreig, laboreig amb subsolat i no laboreig) sota una rotació blat-ordi-blat-colza. A l’assaig d’Agramunt, amb 430 mm de precipitació mitja anual i un sòl classificat com Xerofluvent typic, es van comparar quatre sistemes de laboreig (laboreig convencional, mínim laboreig, laboreig amb subsolat i no laboreig) sota una rotació ordi-blat. Finalment, a Peñaflor, amb 390 mm de precipitació mitja anual i un sòl classificat com Xerollic Calciorthid, es van comparar tres sistemes de laboreig (laboreig convencional, mínim laboreig i no laboreig) i dos sistemes de cultiu (una rotació ordi-guaret i un monocultiu d’ordi). Amb la finalitat de determinar els balanços de C orgànic del sòl, durant tres campanyes (202-2003, 2003-2004, 2004-2005) a l’assaig de Peñaflor i durant dos (2003-2004, 2004-2005) als assajos d’Agramunt i Selvanera, es van realitzar mesures d’emissions de diòxid de carboni del sòl a l’atmosfera cada 15 dies, al llarg de tota la campanya, i d’emissions en el moment dels treballs del sòl, disminuint així l’interval entre mesures, amb la finalitat de quantificar, així, les pèrdues de C del sòl. Alhora, per determinar els guanys de C en el sòl es va mesurar la massa radicular i la producció de palla durant la collita de les tres campanyes. De la mateixa manera, es va realitzar un seguiment de l’estat d’agregació de la superfície del sòl, durant dues campanyes als sistemes de cultiu de Peñaflor, mesurant la distribució d’agregats secs i l’estabilitat a l’aigua dels agregats. També es van realitzar tres mostrejos en post-collita, amb la finalitat d’estudiar la influència de les fraccions de matèria orgànica en l’estat d’agregació del sòl (Campanyes 2002-2003 i 2003-2004) i en el contingut de C orgànic del sòl, matèria orgànica particulada i C mineral associat en profunditat (campanya 2004-2005). En els primers 5 cm de sòl, la sembra directa acumula d’un 50% a un 100% més de C orgànic i d’un 20% a un 50% més de matèria orgànica particulada i C mineral associat que el sistema convencional. No obstant, aquest comportament s’inverteix en profunditat on la sembra directa passa a tenir els valors més baixos i el laboreig convencional els més elevats. La intensificació dels sistemes de cultiu va portar a un augment en el contingut de C orgànic del sòl en tots els sistemes de laboreig. L’estudi de fraccions de matèria orgànica en funció de l’estat d’agregació ha demostrat que la sembra directa comparada amb els sistemes llaurats, implica una estabilitat més elevada dels macroagregats del sòl i, per tant, un major segrest de C orgànic en aquests macroagregats a llarg termini. Aquest C orgànic estabilitzat en macroagregats de sembra directa es troba en forma de matèria orgànica intra-particulada oclusa dins dels microagregats que a la seva vegada es troben dins dels macroagregats. L’estat d’agregació (distribució de la mida dels agregats i estabilitat dels mateixos) del sòl té una dinàmica temporal influïda pel creixement del cultiu, observant-se una davallada en l’estabilitat dels agregats amb la mort del cultiu. Al llarg de la campanya de cultiu, les emissions de CO2 del sòl a l’atmosfera respecte a la sembra directa van ser un 30% superiors sota laboreig convencional i un 5% més elevades sota laboreig reduït. Les emissions de CO2 durant el laboreig van ser superiors en un 100% en laboreig convencional i en un 50% en laboreig reduït respecte a la sembra directa. A la majoria dels casos, els balanços de C van mostrar pèrdues en tots els sistemes de laboreig i de cultiu. No obstant, sota sembra directa es van observar una reducció a les pèrdues de C orgànic del sòl del 20% al 50% respecte al laboreig convencional. La rotació ordi-guaret va mostrar majors pèrdues degut a la disminució en el C orgànic aportat.

ii

Page 12: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Resumen El objetivo principal del presente trabajo ha sido evaluar los efectos del laboreo y del sistema de cultivo en la estabilización y secuestro de C orgánico en el suelo, e identificar los factores que controlan estos procesos, así como, el papel de la agregación del suelo en la fijación de C, en los agroecosistemas semiáridos de secano del valle del Ebro. Para llevar a cabo dicho objetivo se seleccionaron tres ensayos de laboreo de larga duración situados en Selvanera y Agramunt (provincia de Lleida) y en Peñaflor (provincia de Zaragoza). En el ensayo de Selvanera (suelo: Xerocrept fluventic; precipitación media anual: 475 mm) se compararon cuatro sistemas de laboreo (laboreo convencional, laboreo con subsolado, laboreo reducido y no-laboreo). En Agramunt (suelo: Xerofluvent typic; precipitación media anual: 430 mm) se compararon cuatro sistemas de laboreo (laboreo convencional, laboreo con subsolado, laboreo reducido y no-laboreo) bajo una rotación cebada-trigo. Por último, en Peñaflor (suelo: Xerollic Calciorthid; precipitación media anual: 390 mm) se compararon tres sistemas de laboreo (laboreo convencional, laboreo reducido y no-laboreo) y dos sistemas de cultivo (una rotación cebada-barbecho y un monocultivo de cebada). Con el fin de calcular los balances de C orgánico del suelo, las pérdidas de C en el suelo se determinaron durante tres campañas de cultivo (2002-2003, 2003-2004 y 2004-2005) en el ensayo de Peñaflor y durante dos campañas (2003-2004 y 2004-2005) en Agramunt y Selvanera. Las emisiones de CO2 del suelo a la atmósfera se midieron cada 15 días, a lo largo de toda la campaña de cultivo, y a intervalos de tiempo menores (horas) en los momentos puntuales de las labores. Las ganancias de C orgánico se estimaron a partir de la biomasa radicular y de la producción de paja en la cosecha de las tres campañas. Asimismo, en el ensayo de Peñaflor y a lo largo de dos campañas, se realizó un seguimiento del estado de agregación de la superficie del suelo, según tratamiento de laboreo y sistema de cultivo. Para ello, se caracterizaron la distribución de tamaños de agregado y la estabilidad de los agregados al agua. También, se realizaron tres muestreos en post-cosecha, con el fin de estudiar la influencia de diferentes fracciones de materia orgánica (materia orgánica particulada y materia orgánica mineral asociada) en el estado de agregación del suelo (campañas 2002-2003 y 2003-2004) y su distribución en el perfil del suelo (campaña 2004-2005). En los primeros 5 cm del suelo, el sistema de no-laboreo acumuló entre un 50% y un 100% más de C orgánico que el sistema convencional con vertedera y entre un 20% y un 50% más de C en forma de materia orgánica particulada y de C mineral-asociado. Sin embargo, este comportamiento se invirtió en horizontes más profundidad en los que el sistema de no-laboreo pasó a tener los valores más bajos y el laboreo convencional los más elevados. La intensificación de los sistemas de cultivo condujo a un mayor contenido de C orgánico del suelo en todos los sistemas de laboreo. El estudio de fracciones de materia orgánica del suelo en función del estado de agregación ha demostrado que el no-laboreo, en comparación con los sistemas con laboreo, favorece la estabilidad de los macroagregados del suelo y, por lo tanto, a largo plazo, el secuestro de C orgánico en estos macroagregados. Bajo no-laboreo, el C orgánico estabilizado en los macroagregados se encuentra en forma de materia orgánica intra-particulada ocluida dentro de los microagregados formados en el interior de los macroagregados. El estado de agregación del suelo presenta una dinámica temporal dependiente del estado de desarrollo del cultivo, habiéndose observado una caída en la estabilidad de los agregados tras la muerte del cultivo. Durante la campaña de cultivo, las emisiones de CO2 del suelo a la atmósfera son un 30% y un 5% mayores en laboreo convencional y laboreo reducido, respectivamente, que en no-laboreo. Mayores diferencias en las emisiones de CO2 se observan entre no-laboreo y el resto de tratamientos de laboreo durante la aplicación de las labores. En la mayor parte de los casos, el balance de C muestra pérdidas de C orgánico en todos los sistemas de laboreo y de cultivo. Sin embargo, bajo no-laboreo estas pérdidas son entre un 20 y un 50% menores que bajo laboreo convencional. Asimismo, la rotación cebada-barbecho mostró mayores pérdidas de C orgánico que el monocultivo de cebada debido a los menores aportes de C orgánico al suelo provenientes de los residuos de cosecha.

iii

Page 13: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Abstract The main objective of this research was to evaluate the effects of tillage and cropping system on soil organic C sequestration in dryland semiarid agroecosystems of the Ebro valley, as well as the factors controlling this C stabilization. The study was conducted at three long-term tillage experiments located at Selvanera (Lleida province), Agramunt (Lleida province) and Peñaflor (Zaragoza province). At Selvanera (475 mm of mean annual precipitation and a Xerocrept fluventic soil) four tillage systems were compared (conventional tillage, subsoil tillage, reduced tillage and no-tillage) under a wheat-barley-wheat-rapeseed rotation. At Agramunt (430 mm of mean annual precipitation and a Xerofluvent typic soil) four tillage systems were compared (conventional tillage, subsoil tillage, reduced tillage and no-tillage) under a wheat-barley. At Peñaflor (390 mm of mean annual precipitation and a Xerollic calciorthid soil) three tillage systems were compared (conventional tillage, reduced tillage and no-tillage) and two cropping systems (a barley-fallow rotation and a continuous barley system). In order to determine C ouputs, measurements of soil CO2 emissions were carried out during three cropping seasons (2002-2003, 2003-2004, 2004-2005) at Peñaflor and during two (2003-2004, 2004-2005) at Agramunt and Selvanera. Soil CO2 measurements were performed every 15 days and during tillage with greater frequency. To quantify C inputs, root biomass and straw production were measured at harvest. Soil aggregation dynamics was monitored during two cropping seasons at the two cropping systems of Peñaflor by measuring dry aggregate distribution and water aggregate stability. Three soil samplings were made after harvest to study the influence of organic matter fractions on soil aggregation dynamics (2002-2003 and 2003-2004 cropping seasons) and soil organic C content, particulate organic matter and mineral-associated C (2004-2005 cropping season). In the upper 5 cm of soil depth, no-tillage sequestered 50-100% more organic C and 20-50% more particulate organic matter and mineral-associated C than conventional tillage. However, this trend was inverted at lower depths where no-tillage showed the lowest values and conventional tillage the greatest. Cropping system intensification led to a greater soil organic C content in all the tillage systems. The study of the soil organic matter fractions in relation with the dynamics of soil aggregation demonstrated that no-tillage led to a greater macroaggregate stability and, thus, to a greater long-term organic C sequestration in these macroaggregates. This organic C stabilized under no-tillage macroaggregates consisted of particulate organic matter occluded within the microaggregates protected by the macroaggregates. The temporal variation of soil aggregation was affected by crop growth, with a drop of the stability of soil macroaggregates when crop died. During the cropping season, soil CO2 emissions to the atmosphere were 30% and 5% greater under conventional tillage and reduced tillage, respectively than under no-tillage. Soil CO2 emissions at the time of tillage were 100% and 50% greater under conventional tillage and reduced tillage, respectively, than under no-tillage. In all the cases, soil organic C balances showed C looses in all tillage and cropping systems. However, under no-tillage soil C looses were 20-50% lower than under conventional tillage. Finally, the barley-fallow rotation showed greater C losses due to reduction in the soil C inputs during the long fallow phase.

iv

Page 14: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Índice general

Agradecimientos…………………………………………………………………..... i

Resum……………………………………………………………...…………........... ii

Resumen…………....……………………………………………………………...... iii

Abstract…………....……………………………………………………………....... iv

Índice general…...………………………………………………………………....... v

Índice de tablas…………………………………………………………………........ x

Índice de figuras...…………………………………………………………………... xiii

Lista de símbolos y abreviaturas……………………………………………………. xvii

Capítulo 1. Introducción general………………………………………………..... 1

1. Agroecosistemas de secano del valle del Ebro: características y

limitaciones.......................................................................................... 3

2. Importancia de la materia orgánica en los suelos de los secanos

del valle del Ebro…………………………………………………….. 4

3. Mecanismos de secuestro de C en el suelo……………….……….. 5

4. Influencia del manejo del suelo en el secuestro de C en

agroecosistemas semiáridos de secano del valle del Ebro………...... 7

5. Objetivos y estructura del trabajo…………………………………. 10

Referencias…………………………………………………………... 11

Capítulo 2. Tillage effects on total, particulate and mineral-associated soil

organic carbon in Mediterranean dryland agroecosystems…….......... 15

1. Introduction……………………………………………………….. 18

2. Materials and methods………………………………….................. 20

2.1. Sites, tillage and cropping systems..................................... 20

2.2. Soil sampling and analyses………………………………. 21

3. Results and discussion…………………………………………….. 22

3.1. Soil bulk density………………………………………….. 22

3.2. Total SOC………………………………………………... 24

3.3. Particulate organic matter carbon (POM-C) and

mineral-associated carbon (min-C)………………….…. 27

v

Page 15: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

3.4. Relative C pool size to SOC……………………………… 29

4. Summary and conclusions………………………………………… 30

References………………………………………………………… 31

Capítulo 3. Soil organic matter fractions in relation to soil aggregation: effects

of tillage and cropping intensification under semiarid conditions…... 37

1. Introduction……………………………………………………….. 40

2. Materials and methods…………………………………………….. 42

2.1. Site description and soil sampling……………………….. 42

2.2. Soil aggregate separation………………………………... 43

2.3. SOM size-density fractionation…………………………... 44

2.4. Carbon analyses………………………………………….. 45

2.5. Statistical analyses……………………………………….. 47

3. Results and discussion…………………………………………….. 47

3.1. Total SOC content………………………………………... 47

3.2. Soil aggregate distribution……………………………….. 48

3.3. Soil aggregate C………………………………………….. 49

3.4. Intra-aggregate particulate organic C…………………... 51

3.5. Mineral-associated and light fraction C…………………. 54

4. Summary and conclusions………………………………………… 56

References………………………………………………………… 57

Capítulo 4. Tillage effects on carbon stabilization in soil microaggregates under

semiarid Mediterranean conditions………………………………….. 63

1. Introduction……………………………………………………….. 66

2. Materials and methods…………………………………………….. 67

2.1. Sites, tillage and cropping systems………………………. 67

2.2. Soil sampling and analyses………………………………. 68

2.2.1. Soil aggregate separation………………………... 68

2.2.2. Microaggregate isolation………………………… 69

2.2.3. Intra- and intermicroaggregate particulate

organic matter separation………………………… 70

2.2.4. Carbon analyses………………………………….. 71

vi

Page 16: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

3. Results and discussion…………………………………………….. 72

3.1. Total soil organic carbon (SOC)........................................ 72

3.2. Macroaggregate content..................................................... 74

3.3. Microaggregates within macroaggregates………………. 74

3.4. Microaggregate-associated C fractions………………….. 77

4. Summary and conclusions……………………………….………... 80

References………………………………………………………… 80

Capítulo 5. Tillage and cropping intensification effects on soil aggregation:

temporal dynamics and controlling factors under semiarid conditions 85

1. Introduction……………………………………………………….. 88

2. Materials and methods…………………………………………….. 90

2.1. Sites, tillage and cropping systems………………………. 90

2.2. Soil sampling……………………………………………... 91

2.3. Soil aggregation measurements………………………….. 92

2.4. Soil water content, SOC and microbial biomass………… 93

2.5. Statistical analyses……………………………………….. 94

3. Results and discussion…………………………………………….. 94

3.1. Tillage and cropping system effects ……………………... 94

3.1.1. Dry aggregate size distribution…………………... 94

3.1.2. Water stability of air-dried aggregates (WASAD)… 97

3.1.3. Water aggregate stability of field-moist

aggregates (WASFM)…………………………….. 98

3.2. Temporal variation in soil aggregation………………….. 99

3.2.1. Temporal variation of the aggregate mean weight

diameter (MWD)………………………………... 99

3.2.2. Temporal variation in water stability of air-dried

aggregates (WASAD)…………………………….. 101

3.2.3. Temporal variation in water stability of field-

moist aggregates (WASFM)……………………… 104

4. Conclusions……………………………………………………….. 106

References………………………………………………………… 106

vii

Page 17: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 6. Soil carbon dioxide fluxes following tillage in semiarid

Mediterranean agroecosystems……………………………………… 111

1. Introduction……………………………………………………….. 114

2. Materials and methods……………………………………………. 115

2.1. Sites, tillage and cropping systems………………………. 115

2.2. Experimental measurements……………………………... 117

2.2.1. Soil CO2 fluxes …………………………………... 117

2.2.2. Soil temperature and soil moisture content……… 118

2.3. Statistical analyses……………………………………….. 119

3. Results and discussion…………………………………………….. 119

3.1. Tillage effects on short-term soil CO2 fluxes…………….. 119

3.2. Effect of tillage on mid-term soil CO2 fluxes…………….. 123

3.3. Influence of soil temperature and soil water content on

short-term soil CO2 fluxes ………………………………... 124

3.4. Effect of site and tillage date on soil CO2 fluxes…………. 126

4. Summary and conclusions………………………………………… 129

References………………………………………………………… 130

Capítulo 7. Long-term tillage effects on soil carbon dioxide fluxes in semiarid

Mediterranean conditions………………………………………….… 133

1. Introduction……………………………………………………….. 136

2. Materials and methods…………………………………………….. 138

2.1. Experimental measurements……………………………... 139

2.1.1. Soil CO2 fluxes (C outputs)………………………. 139

2.1.2. Weather, soil temperature and soil moisture

content……………………………………………. 139

2.1.3. C inputs…………………………………………... 140

2.2. Statistical analyses……………………………………….. 141

3. Results and discussion…………………………………………….. 142

3.1. Tillage effects on carbon dioxide fluxes………………….. 142

3.2. Cropping system effects on carbon dioxide fluxes……….. 145

3.3. Soil temperature and water content……………………… 147

3.4. Soil carbon balance……………………………………… 149

viii

Page 18: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

4. Summary and conclusions………………………………………… 152

References………………………………………………………… 154

Capítulo 8. Conclusiones generales……………………………………………… 159

ix

Page 19: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Índice de tablas Capítulo 2

2.1. Site and soil characteristics in the Ap soil layer……………………………………….. 21

2.2. Soil organic carbon (SOC) stratification ratio (0-5:30-40) at Agramunt (AG),

Selvanera (SV) and Peñaflor in a continuous barley cropping system (PN-CC) and in

a barley-fallow rotation (PN-CF) for different tillage treatments (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage)………………………. 26

2.3. Cumulative soil organic carbon (SOC) content at Agramunt (AG), Selvanera (SV)

and Peñaflor in a continuous barley cropping system (PN-CC) and in a barley-fallow

rotation (PN-CF) under different tillage treatments (CT, conventional tillage; ST,

subsoil tillage; RT, reduced tillage; NT, no-tillage)…………………………………… 27

2.4. Distribution of particulate organic matter C (POM-C) content in the plough layer (0-

40 cm depth) at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous barley

cropping system (PN-CC) as affected by tillage (CT, conventional tillage; ST, subsoil

tillage; RT, reduced tillage; NT, no-tillage)………………………………………….... 28

2.5. Distribution of mineral-associated C (min-C) content in the plough layer (0-40 cm

depth) at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous barley

cropping system (PN-CC) as affected by tillage (CT, conventional tillage; ST, subsoil

tillage; RT, reduced tillage; NT, no-tillage)………………………………………….... 29

2.6. Soil C fraction size (POM-C, particulate organic matter carbon; min-C, mineral-

associated carbon) relative to the total soil organic carbon (SOC) in the 0-10 cm and

0-40 cm soil layers at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous

barley cropping system (PN-CC) under different tillage treatments (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage)………………………. 30

Capítulo 3

3.1. Physical and chemical soil properties at the experimental site………………………… 43

3.2. SOC content in the plough layer as affected by tillage (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage) and cropping system (CC, continuous barley system;

CF, barley-fallow rotation)…………………………………………………………….. 48

Capítulo 4

4.1. Site and soil characteristics, cropping systems and tillage treatments………………... 69

4.2. Total soil organic carbon (SOC) concentration (%) in no-tillage (NT) and

conventional tillage (CT) at the three experimental sites (SV, Selvanera; AG,

x

Page 20: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Agramunt; PN, Peñaflor)………………………………………………………………. 72

4.3. Ratio of proportion of soil microaggregates within macroaggregates in no-tillage (NT)

to proportion in conventional tillage (CT) for the three experimental sites (Selvanera,

SV; Agramunt, AG; Peñaflor, PN)………………………………….………………… 75

Capítulo 5

5.1. Site and soil properties at the experimental site ….……………………………...…….. 91

5.2. Total monthly precipitation (P) and mean monthly maximum and minimum air

temperatures (T) recorded at the experimental site during the 2004-2005 period…… 91

5.3. Sampling dates and cropping system phases (CC, continuous cropping; CF, barley-

fallow rotation)………………………………………………………………………… 92

5.4. Tillage and cropping system effects on mean weight diameter (MWD), water stability

of air-dry 1-2 mm size aggregates (WASAD) and water stability of field moist 1-2 mm

size aggregates (WASFM) at the soil surface (0-5 cm depth) for the whole study

period (February 2004 to September 2005)…………………………………………… 95

5.5. Tillage and cropping system effects on total soil organic carbon, 1-2 mm aggregate

organic C, microbial biomass C and soil water content at the soil surface (0-5 cm

depth), for the whole study period (February 2004 to September 2005)……...………. 96

5.6. Determination coefficients (R2) of the regressions between soil aggregation indexes

(MWD, mean weight diameter; WASAD, water aggregate stability of air-dry 1-2 mm

size aggregates; WASFM, water aggregate stability of field moist 1-2 mm size

aggregates) and soil properties……………………………………………….……….. 96

Capítulo 6 6.1. Site and soil (Ap horizon) characteristics.……………………………...……………… 116

6.2. Schedule of soil CO2 measurements for each experimental site (SV, Selvanera site;

AG, Agramunt site; PN-CC, Peñaflor site under continuous cropping and PN-CF,

Peñaflor site under cereal-fallow rotation) and tillage treatment (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage)….................................

120

6.3. Determination coefficients (R2) between soil CO2 fluxes and abiotic factors (soil

temperature and gravimetric water content) per each site (SV, Selvanera site; AG,

Agramunt site; PN-CC, Peñaflor site under continuous cropping and PN-CF,

Peñaflor site under cereal-fallow rotation) and tillage event…………………………..

125

6.4. Cumulative CO2 emissions during the first 48 h following tillage (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage) at Selvanera (SV),

Agramunt (AG), Peñaflor continuous cropping (PN-CC) and Peñaflor barley-fallow

xi

Page 21: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

rotation (PN-CF)……………….. ……………..………………………………………. 126

Capítulo 7

7.1. Site and soil (Ap horizon) characteristics……..……………………………………….. 141

7.2. Cumulative soil CO2 emissions as affected by tillage (CT, conventional tillage; ST,

subsoil tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to June

2005 at Peñaflor site (PN-CC, continuous barley; PN-CF1 and PN-CF2, barley-

fallow rotation) and from November 2003 to June 2005 at Selvanera (SV) and

Agramunt (AG)……………………………………………………………................... 145

7.3. Seasonal CO2 emissions (average of all the tillage treatments), seasonal rainfall and

crop residue production from previous season (average of the tillage treatments)

during the 2003-2004 and 2004-2005 seasons at Selvanera (SV), Agramunt (AG) and

Peñaflor (PN-CC, continuous barley)………................................................................. 147

7.4. Stepwise regression for each cropping season and cropping system (PN-CC,

continuous cropping; PN-CF1 and PN-CF2, cereal-fallow rotation)……………......... 149

7.5. Estimated soil C balance (C inputs – C outputs) as affected by tillage (CT,

conventional tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage) from

November 2002 to June 2005 at PN-CC, PN-CF1 and PN-CF2 and from November

2003 to June 2005 at SV and AG.…………………………………............................... 151

7.6. Estimated soil C balance as affected by tillage (CT, conventional tillage; RT, reduced

tillage; NT, no-tillage) at PN-CC, the continuous barley system and PN-CF, the

barley-fallow rotation, for the 2002-3003 and 2004-2005 cropping

seasons……………………………………………………………………………......... 153

xii

Page 22: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Índice de figuras Capítulo 1

1.1. Aportes y pérdidas de C orgánico en suelos agrícolas……….……………….......... 6

Capítulo 2

2.1. Soil bulk density profile at Agramunt (AG), Selvanera (SV) and Peñaflor in a

continuous barley cropping system (PN-CC) and in a barley-fallow rotation (PN-CF)

as affected by tillage (CT, conventional tillage; ST, subsoil tillage; RT, reduced

tillage; NT, no-tillage)…………..……………………………………………………..

23

2.2. Vertical distribution of the soil organic carbon (SOC) concentration at Agramunt

(AG), Selvanera (SV) and Peñaflor in a continuous barley cropping system (PN-CC)

and in a barley-fallow rotation (PN-CF) as affected by tillage (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage)…………………….... 25

Capítulo 3

3.1. Detail of the flotation method used for the separation of the light fraction…………… 44

3.2. Aggregate fractionation sequence……………………………………………………… 46

3.3. Water-stable aggregate size distribution at the 0-5, 5-10, 10-20 cm soil depths as

affected by cropping systems (CC, continuous cropping system; CF, barley-fallow

rotation) and tillage management practices (CT, conventional tillage; RT, reduced

tillage; NT, no-tillage)…………..……………………………………………..………

50

3.4. Sand-free aggregate C content distribution at the 0-5, 5-10, 10-20 cm soil depths as

affected by cropping systems (CC, continuous barley system; CF, barley-fallow

rotation) and tillage management practices (CT, conventional tillage; RT, reduced

tillage; NT, no-tillage)……………………………………………….…....................... 52

3.5. Distribution of sand-free intraaggregate particulate organic matter (iPOM) C

concentration at the 0-5, 5-10, 10-20 cm soil depths as affected by cropping systems

(CC, continuous cropping; CF, barley-fallow rotation) and tillage management

practices (CT, conventional tillage; RT, reduced tillage; NT, no-tillage). A: iPOM-C

in large macroaggregates (>2000 µm); B: iPOM-C in small macroaggregates (250-

2000 µm); C: iPOM-C in microaggregates (53-250 µm)……………………………... 53

3.6. Mineral associated soil organic C (mSOC) distribution at the 0-5, 5-10, 10-20 cm soil

depths as affected by cropping systems (CC, continuous cropping; CF, barley-fallow

rotation) and tillage management practices (CT, conventional tillage; RT, reduced

tillage; NT, no-tillage)……...…….……………………………………………….….

55

xiii

Page 23: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 4

4.1. Microaggregate isolator…………………………………………………..…………… 70

4.2. Distribution with depth of the coarse (>2000 µm) and small (250-2000 µm) soil

macroaggregates under conventional tillage (CT) and no-tillage (NT) at Selvanera

(SV), Agramunt (AG) and Peñaflor (PN)……………………………………….…….. 73

4.3. Relationship between stable small macroaggregate (250-2000 µm) content and total

soil organic carbon (SOC).............................................................................................. 75

4.4. Distribution with depth of the percentage of soil microaggregates (250-2000 µm)

contained within coarse (>2000 µm) and small (250-2000 µm) macroaggregates

under conventional tillage (CT) and no-tillage (NT) at Selvanera (SV), Agramunt

(AG) and Peñaflor (PN)………………………………………………………….......... 76

4.5. Distribution with depth of the total microaggregate-associated C fractions isolated

from small macroaggregates (250-2000 µm) under conventional tillage (CT) and no-

tillage (NT) at Selvanera (SV), Agramunt (AG) and Peñaflor (PN)….………………. 79

Capítulo 5

5.1. Dry aggregate size distribution at the soil surface (0-5 cm depth) under three tillage

treatments (NT, no-tillage; RT, reduced tillage; CT, conventional tillage) averaged

over the whole study period (from February 2004 to September 2005) for continuous

barley (CC) and barley-fallow rotation (CF)…………….……………………...…….. 97

5.2. Temporal variation of the mean weight diameter (MWD) at the soil surface (0-5 cm

depth) as affected by tillage (NT, no-tillage; RT, reduced tillage; CT, conventional

tillage) and cropping system (CC, continuous barley cropping; CF, barley-fallow

rotation) over the study period (February 2004 to September 2005)………………..... 100

5.3. Relationship between mean weight diameter (MWD) of dry aggregates and soil

microbial biomass C for the crop phase of a continuous barley cropping (CC) and the

fallow phase of a barley-fallow rotation (CF) ………………………………...….…... 101

5.4. Temporal variation of water stability of air-dried 1-2 mm size aggregates (WASAD) at

the soil surface (0-5 cm depth) as affected by tillage (NT, no-tillage; RT, reduced

tillage; CT, conventional tillage) and cropping system (CC, continuous cropping; CF,

barley-fallow rotation), over the study period (from February 2004 to September

2005)…………………………………………………………………………………... 102

5.5. Relationship between water stability of air-dried 1-2 mm aggregates (WASAD) and

soil microbial biomass C……………………………………………………................

103

5.6. Variation of gravimetric soil water content at the soil surface (0-5 cm depth) as

affected by tillage (NT, no-tillage; RT, reduced tillage; CT, conventional tillage) and

xiv

Page 24: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

cropping system (CC, continuous barley cropping; CF, barley-fallow rotation) over

the study period (February 2004 to September 2005)……………………….………...

104

5.7. Temporal variation of water stability of field-moist 1-2 mm size aggregates (WASFM)

at the soil surface (0-5 cm depth) as affected by tillage (NT, no-tillage; RT, reduced

tillage; CT, conventional tillage) and cropping system (CC, continuous cropping; CF,

barley-fallow rotation), over the study period (from February 2004 to September

2005)………………………………………................................................................... 105

Capítulo 6

6.1. Open soil chamber measuring soil CO2 emissions immediately after mouldboard

ploughing……………………………………………………………………………… 118

6.2. Short-term soil CO2 fluxes following tillage operations (CT, conventional tillage; ST,

subsoil tillage; RT, reduced tillage; NT, no-tillage) in November 2003 and

November 2004 in Agramunt (AG 2003 and AG 2004, respectively) and July 2003

and August 2004 in Selvanera (SV 2003 and SV 2004, respectively)………………... 121

6.3. Sort-term soil CO2 fluxes following tillage operations (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage) in November 2003 and 2004 in Peñaflor in a

continuous barley system (PN-CC 2003 and PN-CC 2004, respectively) and March

2003 and 2005 in Peñaflor in a barley-fallow rotation (PN-CF 2003 and PN-CF

2005, respectively)…………………………………………………….......................... 122

6.4. Mid-term soil CO2 fluxes in Peñaflor following tillage operations (CT, conventional

tillage; RT, reduced tillage; NT, no-tillage) in November 2003 in a continuous barley

cropping system (PN-CC 2003) and March 2003 in a barley-fallow rotation (PN-CF

2003)…………………………………………………………………………………... 124

6.5. Soil temperature at 5 cm depth during the periods of short-term CO2 emissions

measurements under different tillage treatments (CT, conventional tillage; ST,

subsoil tillage; RT, reduced tillage; NT, no-tillage) at Agramunt (AG 2003 and

2005), Selvanera (SV 2003 and SV 2004) and Peñaflor in a continuous barley

cropping system (PN-CC 2003 and PN-CC 2004) and in a barley-fallow rotation

(PN-CF 2003 and PN-CF 2005)………………………………………………………. 127

6.6. Gravimetric soil water content in the top 5 cm soil layer under different tillage

treatments (CT, conventional tillage; ST, subsoiling tillage; RT, reduced tillage; NT,

no-tillage) during the study periods at Agramunt (AG 2003 and 2005), Selvanera

(SV 2003 and SV 2004) and Peñaflor in a continuous cropping system (PN-CC 2003

and PN-CC 2004) and in a barley-fallow rotation (PN-CF 2003 and PN-CF

2005)…………………………………………………………………………………...

128

xv

Page 25: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 7

7.1. Long-term soil CO2 fluxes as influenced by tillage (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage) and cropping system (PN-CC, continuous cropping

barley; PN-CF1 and PN-CF2 barley-fallow rotations) from November 2002 to June

2005 at the Peñaflor site……………………………………………………………….

143

7.2. Soil temperature in the top 5 cm soil layer as influenced by tillage (CT, conventional

tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to June 2005 at

PN-CF1 site (barley-fallow rotation at Peñaflor)........................................................... 148

7.3. Gravimetric soil water content in the top 5 cm soil layer as influenced by tillage (CT,

conventional tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to

June 2005 at PN-CF1 site (barley-fallow rotation at Peñaflor)……………………….. 148

xvi

Page 26: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Lista de símbolos y abreviaturas AG Sitio de ensayo de Agramunt C Carbono CaCO3 Carbonato Cálcico (%) CC Sistema de cultivo anual CF Sistema de cultivo de “año y vez” CO2 Dióxido de carbono COS Carbono orgánico del suelo CT Sistema de laboreo convencional EC Conductividad eléctrica (dS m-1) IC Carbono inorgánico (%) iPOM Materia orgánica particulada dentro del agregado iPOM-C Carbono de la materia orgánica particulada dentro del agregado (g C kg-1

agregados libres de arenas) Inter-mM-POM-C Carbono orgánico de la materia orgánica particulada dentro del macroagregado

pero no ocluida en el interior de un microagregado (g C kg-1 agregados libres de arenas)

Intra-mM-POM-C Carbono orgánico de la materia orgánica particulada ocluida en el interior del microagregado que se encuentra dentro de un macroagregado (g C kg-1 agregados libres de arenas)

LF Fracción ligera de la materia orgánica (g C kg-1 agregados libres de arenas) LSD Mínima diferencia significativa Min-C Carbono asociado con las partículas minerales de limo y arcilla (Mg ha-1, g C

kg-1 agregados libres de arenas) Mineral-mM-C Carbono orgánico asociado con los minerales de limo y arcilla de los

microagregados ocluidos en el interior del macroagregado (g C kg-1 agregados libres de arenas)

MOS Materia orgánica del suelo MWD Diámetro medio ponderado de los agregados (mm) NT Sistema de no-laboreo o siembra directa P Precipitación (mm) PN-CC Sistema de cultivo annual en el ensayo de Peñaflor PN-CF Sistema de cultivo de año y vez” en el ensayo de Peñaflor POM Materia orgánica particulada POM-C Carbono de la material orgánica particulada (Mg ha-1) RT Sistema de mínimo laboreo SOC Carbono orgánico del suelo (g m-2, g kg-1, Mg ha-1, %) SOM Materia orgánica del suelo ST Sistema de laboreo con subsolado SV Sitio de ensayo de Selvanera T Temperatura del aire (ºC) Total-mM-C Carbono orgánico de los microagregados ocluidos dentro de los

macroagregados (g C kg-1 agregados libres de arenas) ST Temperatura del suelo (ºC) SWC Contenido de agua gravimétrico del suelo (g g-1) WASAD Estabilidad de agregados secos al agua (%) WAS FM Estabilidad de agregados húmedos al agua (%)

xvii

Page 27: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 1

Introducción general

Page 28: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

3

Introducción general

1. Agroecosistemas de secano del valle del Ebro: características y limitaciones

La superficie del valle del Ebro se estima en unos 85.000 km2, de la que casi la mitad

está catalogada como superficie agraria útil (http://oph.chebro.es). En más del 80% de

esta superficie agrícola se practica una agricultura de secano en la que se produce,

básicamente, cereales de invierno (principalmente cebada y trigo), al igual que sucede

en otras zonas similares de la cuenca mediterránea.

Durante décadas, el sistema de cultivo tradicional que se ha ido implantando en las

zonas más áridas de los agroecosistemas de secano del valle del Ebro es la rotación

cebada-barbecho, o cultivo de “año y vez”, que incluye un largo periodo de barbecho de

16 a 18 meses de duración, que transcurre entre la cosecha (junio-julio) y la siembra

(noviembre-diciembre) del año siguiente. En este sistema, el manejo tradicional del

suelo consiste en un pase con arado de vertedera, como labor primaria, seguido de

varios pases de cultivador, como labores secundarias, durante el periodo de barbecho de

la rotación. En las zonas menos áridas de estos agroecosistemas, el sistema de cultivo

que se práctica es un monocultivo de cereal. En estas zonas, este sistema de cultivo se

combina con un trabajo del suelo intensivo en profundidad mediante la utilización del

arado de vertedera o de aperos verticales tipo subsolador.

La característica principal de los agroecosistemas de secano del valle del Ebro es la

baja e irregular pluviometría, con valores medios anuales que oscilan entre 250 y 500

mm. Por lo tanto, en estas condiciones de escasez de agua, la producción agrícola es

muy dependiente de la precipitación caída durante la campaña del cereal (Austin et al.,

1998a), produciéndose unos bajos e inestables rendimientos en las cosechas de cereal.

Esta limitación en la producción de biomasa vegetal se ha traducido, a su vez, en unos

bajos contenidos de materia orgánica en los suelos cultivados de estas zonas.

Recientemente, Rodríguez-Murillo (2001) ha compilado información sobre carbono

orgánico del suelo (COS) de un total de 2.851 horizontes repartidos por toda la

geografía española y observado cómo el contenido de COS se correlaciona con la

precipitación media anual (r = 0.940).

Page 29: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

4Capítulo 1

2. Importancia de la materia orgánica en los suelos de los secanos del valle del

Ebro

La materia orgánica del suelo (MOS) influye notablemente en un elevado número de

procesos edáficos, entre ellos la disponibilidad de nutrientes, la retención de agua y la

protección del suelo ante procesos erosivos. En los secanos semiáridos del valle del

Ebro, estos procesos afectan significativamente al crecimiento y al rendimiento final de

los cultivos.

Si bien la disponibilidad de nutrientes no es un factor puramente limitante de la

producción agrícola, dadas las altas dosis de fertilizantes que año tras año han sido

aplicadas por los agricultores con el fin de maximizar los rendimientos (Cantero-

Martínez et al., 2003), un incremento del contenido de MOS podría servir para

disminuir las elevadas aplicaciones de fertilizantes en los agroecosistemas semiáridos

del valle del Ebro.

Tal y como se ha comentado en el apartado anterior, la escasez de agua para los

cultivos es el principal factor limitante para la producción en estos agroecosistemas

(Austin et al., 1998b; Lampurlanés et al., 2002). Bescansa et al. (2006), trabajando

también en condiciones de secano semiárido del valle del Ebro, observaron que en

aquellos tratamientos de laboreo que presentaban los mayores niveles de MOS la

capacidad de retención de agua era también mayor.

Asimismo, gran parte de los suelos del valle del Ebro están expuestos a la acción del

Cierzo, viento intenso y seco de componente dominante oeste-noroeste, y, muy

particularmente, a sus efectos erosivos (López et al., 1998). Dada esta situación, la MOS

también juega un papel fundamental en la prevención y control de pérdidas de suelo por

erosión al favorecer la formación de agregados de suelo de mayor tamaño y más

estables.

Por tanto, la MOS no sólo controla una serie de factores que contribuyen al correcto

desarrollo del cultivo y, con ello, a un buen rendimiento del mismo, sino que también

desempeña un papel fundamental en la sostenibilidad de los frágiles y vulnerables

agroecosistemas de secano. Esto último, ha llevado a varios autores a considerar la

MOS como el principal parámetro indicador de la calidad de los suelos agrícolas

(Gregorich et al., 1994; Wander y Bollero, 1999).

En la última década, tras los acuerdos del Protocolo de Kyoto, se ha reconocido que

los suelos agrícolas pueden actuar como sumideros o fuentes de CO2. Al proceso de

incrementar el contenido del COS como resultado de un cambio en una determinada

Page 30: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

5Introducción general

actividad o práctica de manejo agrícola se denomina “secuestro” de carbono (C).

Aunque en los suelos agrícolas el secuestro de C tiene un potencial finito y no es un

proceso permanente, posee la ventaja, sin embargo, de ser un proceso rápido (tan sólo el

tiempo que se tarda en adoptar la práctica de manejo), por lo que en pocos años ya se

pueden observar resultados, a diferencia de otras medidas de índole más industrial o

tecnológica quizá más efectivas pero que pueden tardar varios años en implementarse

(Smith, 2004).

Por todo lo anterior, la MOS en los agroecosistemas semiáridos de secano del valle

del Ebro es un componente del suelo fundamental no sólo por lo que respecta a la

productividad de dichos sistemas, sino también por el importante papel que adquiere,

según los acuerdos del Protocolo de Kyoto, a la hora de compensar emisiones de CO2

provenientes de otras actividades no agrarias.

3. Mecanismos de secuestro de C en el suelo

El incremento o disminución de los niveles de C orgánico en los suelos agrícolas

viene determinado por el balance entre los diferentes aportes y pérdidas de C orgánico.

Entre los aportes o inputs de C orgánico en el suelo se encuentran los aportes de

biomasa vegetal, tales como restos de cosecha (raíces y parte aérea), las excreciones de

C orgánico por las raíces fruto de su actividad (rizodeposiciones) o bien la aplicación de

residuos orgánicos. Las pérdidas (outputs) de C orgánico son debidas a la

mineralización de la MOS por los microorganismos del suelo y a la lixiviación de

compuestos orgánicos solubles (Fig. 1.1). Esta última causa de pérdida de C orgánico es

poco frecuente en los agroecosistemas semiáridos de secano. Por lo tanto, un

incremento de los niveles de MOS, bajo cualquier circunstancia, pasa por uno de estos

tres posibles escenarios: (i) un incremento de los aportes de C orgánico, (ii) una

disminución de las pérdidas de C o, el más favorables de los escenario, (iii) un

incremento de los aportes de C y, al mismo tiempo, una disminución de las pérdidas de

C orgánico.

En los agroecosistemas semiáridos de secano del valle del Ebro, un incremento de

los inputs de C orgánico pasa por una mayor producción de biomasa vegetal durante la

fase de cultivo o bien por una intensificación de los sistemas de cultivo consiguiendo

más cosechas en un mismo periodo de tiempo.

Según lo comentado anteriormente, la mineralización o descomposición de la MOS

es la principal causa de pérdida de C orgánico en el suelo. Existen tres vías posibles de

Page 31: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

6Capítulo 1

fijación del C orgánico en la matriz del suelo: la estabilización química, la estabilización

bioquímica y la estabilización física. La estabilización química hace referencia a la

unión de partículas minerales elementales del tamaño de limos y arcillas con materiales

orgánicos, quedando estos últimos protegidos en forma de compuestos órgano-

minerales (Hassink, 1997). La estabilización bioquímica es la estabilización de la MOS

debido a su propia composición química (presencia de compuestos recalcitrantes, tales

como lignina, polifenoles, etc.) (Six et al., 2002). Por último, la estabilización física

corresponde a la protección de la MOS dentro de los agregados del suelo. Así, pues, los

agregados del suelo juegan un papel fundamental en el secuestro de C orgánico ya que

la materia orgánica encapsulada dentro de los mismos agregados no resulta accesible al

ataque de los microorganismos (Tisdall y Oades, 1982). Cuanto menos estable sea un

agregado, menor será su resistencia ante procesos de alteración que pueden llegar a

ocasionar su rotura, liberándose la materia orgánica protegida en su interior. En

agroecosistemas, la principal causa de la rotura de los agregados de suelo es el laboreo.

Residuos de cosecha

Residuos animales Rizodeposiciones CO2

C orgánico del suelo

Control de la descomposición - Abiótico (T, H2O, O2, pH) - Características del substrato - Disponibilidad de nutrientes - Alteración del suelo - Comunidad de microorganismos

C orgánico

disuelto

Fig. 1.1. Aportes y pérdidas de C orgánico en suelos agrícolas (adaptado de Paustian et al.,

1997).

Six et al. (1998, 1999) identificaron y aislaron diferentes fracciones de materia

orgánica relacionadas con los agregados del suelo y, a continuación, propusieron un

modelo de formación de agregados en relación con las diversas fracciones de materia

orgánica aisladas y su alteración por el laboreo. El interés de estas fracciones de materia

orgánica reside en la compleja y heterogénea composición de la MOS. De esta manera,

la división de la MOS en diferentes fracciones con características homogéneas, hace

más fácil el estudio y la comprensión de los mecanismos de estabilización y secuestro

de C orgánico en el suelo. Dos de las fracciones de materia orgánica más estudiadas en

Page 32: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

7Introducción general

agroecosistemas son la materia orgánica particulada y la materia orgánica mineral

asociada. La materia orgánica particulada consiste en fragmentos finos de raíces y otros

residuos orgánicos en diversos estados de descomposición (Cambardella y Elliot, 1992).

La importancia de esta fracción reside en su naturaleza lábil y, por tanto, en su fácil

descomposición, lo que la hace muy sensible a los cambios de manejo del suelo. La

materia orgánica mineral asociada corresponde a la MOS químicamente estabilizada por

uniones con partículas de limo y arcilla y es fruto de la descomposición de la materia

orgánica particulada. El interés de esta fracción mineral asociada radica en su elevada

estabilidad, lo que le confiere una alta persistencia en el suelo.

4. Influencia del manejo del suelo en el secuestro de C en agroecosistemas

semiáridos de secano del valle del Ebro

Como ya se ha comentado, las principales prácticas tradicionales de manejo agrícola

en los secanos del valle del Ebro son la rotación cereal-barbecho (o cultivo de “año y

vez”) y el arado de vertedera como apero principal de preparación del terreno en las

zonas más áridas y el monocultivo de cereal junto a un laboreo intensivo (mediante la

utilización del arado de vertedera o de aperos verticales) en las zonas menos áridas. La

inclusión del barbecho en la rotación se ha justificado, principalmente, por la creencia

de que esta práctica incrementa el agua disponible para el cultivo. Sin embargo, son

varios los estudios llevados a cabo en la zona que cuestionan y demuestran la baja

eficiencia del sistema de “año y vez” en la conservación del agua en el suelo

(McAneney y Arrúe, 1993; Austin et al., 1998a,b; Lampurlanés et al., 2002; Moret et

al., 2006a). Por otro lado, Moret et al. (2006b), durante dos campañas agrícolas

consecutivas con monocultivo de cebada, obtuvieron 560 g m-2 de biomasa aérea total

mientras que, para el mismo periodo, en la rotación “año y vez” sólo 285 g m-2. Por lo

tanto, el sistema de “año y vez” en los secanos del valle del Ebro resulta en un menor

aporte de C orgánico al suelo. A su vez, la fase de barbecho de la rotación puede dar

lugar a cambios en las condiciones microclimáticas en el horizonte superficial del suelo

(e.g., cambios en los regímenes hídrico y térmico) que estimulen o, al contrario, frenen

la actividad de los microorganismos del suelo y, por lo tanto, la mineralización de la

materia orgánica. Hasta la fecha no existe ningún estudio en el que se haya analizado

cuál es la influencia de la intensificación de los sistemas de cultivo, con respecto al

sistema de “año y vez”, en los niveles de MOS en los secanos semiáridos del valle del

Ebro. En otras zonas semiáridas similares de la cuenca Mediterránea, los escasos

Page 33: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

8Capítulo 1

estudios realizados muestran unos mayores niveles de MOS en el monocultivo de cereal

con respecto a la rotación cereal-barbecho (López-Bellido et al., 1997; Mrabet et al.,

2001).

A su vez, la inversión del suelo por la acción del laboreo altera, como ya hemos

comentado, las condiciones microclimáticas del suelo modificando la temperatura y el

contenido de humedad del suelo e incrementando la capacidad de aireación del mismo.

Esta modificación del clima del suelo, junto a la incorporación de los residuos de

cosecha crea un ambiente más favorable para la actividad de los microorganismos

acelerándose, con ello, la oxidación de la materia orgánica (Paustian et al., 1997).

Hasta la fecha son escasas las investigaciones realizadas en los secanos semiáridos

del valle del Ebro en las que se haya cuantificado el efecto del sistema de laboreo sobre

el contenido de materia orgánica en el suelo. Bescansa et al. (2006), en el estudio de

comparación de sistemas de laboreo antes mencionado, han observado mayores niveles

de materia orgánica en la superficie del suelo en un sistema de siembra directa que en

un sistema de laboreo convencional con arado de vertedera. Resultados similares han

sido obtenidos en otras zonas semiáridas de la Península Ibérica (Hernanz et al., 2002;

Moreno et al., 2006), lo que confirma el efecto directo del laboreo en la pérdida de

MOS en ambientes semiáridos, especialmente en la superficie del suelo. Sin embargo,

en el caso de las zonas semiáridas del valle del Ebro es necesaria más información, no

sólo sobre el efecto de diferentes sistemas de laboreo en los niveles de MOS, sino

también sobre los factores implicados en la pérdida o ganancia de MOS.

Según estudios realizados en otras zonas semiáridas, la estimulación de la oxidación

de la materia orgánica debida al laboreo varía en función de una serie de factores, tales

como el momento del año en el que se realizan las labores, la producción de residuos de

la campaña anterior y las condiciones de humedad y temperatura del suelo en el

momento del laboreo (Kessavalou, et al., 1998; Curtin et al., 2000). Asimismo, la

operación de labrar implica una liberación física del CO2 previamente almacenado en la

estructura del suelo (Reicosky et al., 1997). Este proceso, conocido en la literatura como

degassing, puede llegar a ser significativo según el momento, el manejo y las

condiciones edafo-climáticas de la parcela. Por un lado, puede implicar, una importante

pérdida de C en forma de CO2 almacenado en el suelo y, por otro, una cierta

contribución al efecto invernadero. En los agroecosistemas semiáridos del valle del

Ebro no se ha estudiado hasta la fecha la influencia del sistema de laboreo en la pérdida

de C orgánico del suelo en forma de CO2, tanto durante la campaña de cultivo como

Page 34: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

9Introducción general

durante el período de laboreo. En un estudio realizado durante dos campañas de cultivo

en una zona semiárida de Castilla-León, Sánchez et al. (2002) encontraron mayores

pérdidas de C-CO2, en un sistema de laboreo convencional, con arado de vertedera, que

en un sistema de laboreo reducido. Sin embargo, en dicho estudio no se analizó el

posible efecto de la siembra directa, sin alteración del suelo, ni el efecto de la pérdida de

C-CO2 justo en el momento de las labores. Asimismo, en el trabajo de Sánchez et al.

(2002) tampoco se estudió la influencia de la intensificación de los sistemas de cultivo

en la pérdida de C en el suelo. En consecuencia, parece necesario disponer de un mayor

conocimiento sobre el efecto de los diferentes sistemas de laboreo y de cultivo sobre las

pérdidas de C orgánico en forma de CO2, así como sobre los factores climáticos y de

manejo (fecha del laboreo, aperos empleados, etc.) que afectan a dichas pérdidas. De

esta manera, podrían identificarse qué prácticas están secuestrando C en el suelo en los

secanos semiáridos del valle del Ebro, así como los mecanismos de este secuestro o

fijación de C en el suelo.

Como ya se ha comentado en el apartado anterior, los agregados de suelo juegan un

papel importante en la estabilización de la MOS. El laboreo del suelo provoca la rotura

física de los agregados del suelo poco estables y, con ello, la liberación de la materia

orgánica protegida físicamente dentro del agregado que pasa a ser oxidada por la acción

de los microorganismos. En síntesis, el estado de agregación del suelo resulta afectado

por diversos factores, tales como el propio sistema de laboreo, el contenido de humedad

del suelo, la ausencia o presencia de cultivo y, en este caso, el estado fenológico del

mismo. En este sentido, no se ha llevado a cabo hasta la fecha ningún estudio en el que

se haya analizado la influencia del laboreo en el estado de agregación del suelo en los

secanos del valle del Ebro. Hernanz et al. (2002), en condiciones semiáridas de la zona

centro peninsular, midieron una mayor estabilidad de los agregados del suelo en

siembra directa, con respecto a un sistema de laboreo convencional, después de la

cosecha de un cultivo de trigo. Igualmente, la evolución temporal del estado de

agregación, bajo diferentes sistemas de laboreo y de cultivo, aún no ha sido estudiada en

el secano semiárido del valle del Ebro.

Por otro lado, también resulta importante investigar el papel que las diferentes

fracciones de MOS desempeñan en la estabilización de este componente en los

agregados del suelo. De esta manera, podremos llegar a entender con mayor

profundidad el funcionamiento de este proceso, las características de las fracciones de la

MOS que lo determinan y, entre éstas, cuáles se pierden a causa del laboreo del suelo.

Page 35: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

10Capítulo 1

Sobre este aspecto, no se ha realizado ningún trabajo ni en los secanos del valle del

Ebro ni en el resto de los secanos semiáridos de España ya que, entre otros factores, la

metodología utilizada para el estudio de las fracciones de materia orgánica, en relación

con los agregados de suelo, es relativamente reciente (Six et al., 1998,1999).

5. Objetivos y estructura del trabajo

La materia orgánica del suelo (MOS) desempeña un papel fundamental en la

productividad y calidad de los agroecosistemas semiáridos de secano. En estos

ambientes, donde la MOS es un factor limitante de la producción, dada la baja

potencialidad del sistema, resulta imprescindible investigar qué prácticas agronómicas

pueden llevar a un secuestro de carbono (C) orgánico en el suelo y, con ello, a un

aumento de los niveles de MOS.

El objetivo general del presente trabajo ha sido evaluar, en las condiciones de secano

semiárido del valle del Ebro, los efectos de la intensificación de los sistemas de cultivo

(supresión del barbecho en la rotación cereal-barbecho) y de los sistemas de laboreo

(laboreo convencional, CT, frente al laboreo de conservación con mínimo laboreo, RT,

laboreo con subsolado, ST, y no-laboreo, NT) sobre el secuestro y estabilización del C

orgánico en el suelo, así como sobre los factores que controlan dicha estabilización y, en

especial, la agregación del suelo.

El presente estudio se ha llevado a cabo entre octubre de 2002 y julio de 2005 en tres

ensayos de laboreo de larga duración repartidos a lo largo del valle del Ebro. El primero

de estos ensayos fue establecido en 1989 por el Grupo de Investigación sobre Física del

Suelo y Laboreo de Conservación de la Estación Experimental de Aula Dei (EEAD-

CSIC) y está situado en la localidad de Peñaflor, en la provincia de Zaragoza. Los otros

dos ensayos, situados en Agramunt y Selvanera, en la provincia de Lleida, fueron

establecidos en dichas localidades en 1990 y 1987, respectivamente, por el Grupo de

Agronomía de Secano del Departamento de Producción Vegetal y Ciencia Forestal de la

Escuela Técnica Superior de Ingeniería Agraria de la Universidad de Lleida. Durante el

periodo experimental indicado, que ha incluido tres ciclos de cultivo, se han abordado

los cuatro objetivos específicos que seguidamente se detallan.

Con el fin de determinar el efecto de los diferentes sistemas de cultivo y de laboreo

en cada sitio de ensayo en el secuestro de C orgánico, el primer objetivo ha consistido

en determinar el contenido (stock) de C orgánico en el suelo de los diferentes sitios de

ensayo según sistema de cultivo y laboreo (Capítulo 2).

Page 36: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

11Introducción general

Un segundo objetivo ha consistido en estudiar el efecto del sistema de laboreo y de

la intensificación de los sistemas del cultivo en la estabilización física de la materia

orgánica por los agregados del suelo y el papel que juegan las diferentes fracciones o

pools de materia orgánica en esta estabilización (Capítulo 3). Dentro de este objetivo,

se ha analizado, asimismo, el papel de los microagregados ocluidos en los

macroagregados del suelo en el secuestro de C en función del sistema de laboreo

(Capítulo 4)

El tercer objetivo se ha centrado en el estudio de la influencia de las prácticas de

manejo en el estado de agregación del suelo a lo largo de la campaña agrícola, así como

de los factores edafo-climáticos que condicionan dicha dinámica (Capítulo 5).

Por último, el cuarto objetivo ha consistido en establecer los correspondientes

balances de C orgánico mediante el control de los aportes (inputs) y las pérdidas

(outputs) de C orgánico en el sistema. Para el cálculo de las pérdidas de C se han

cuantificado in situ las emisiones de CO2 del suelo a la atmósfera, a lo largo de toda la

campaña (Capítulo 7). Dada la importancia de las operaciones de laboreo en las

emisiones de CO2 y la consiguiente pérdida de C, se han cuantificado también las

emisiones de CO2 justo en el momento de las labores y estudiado los factores que

controlan dicho proceso (Capítulo 6). En la sección final de Conclusiones generales

(Capítulo 8) se resumen los principales resultados obtenidos en el presente trabajo de

Tesis Doctoral.

Referencias

Austin, R.B., Cantero-Martínez, C., Arrúe, J.L., Playán, E., Cano-Marcellán, P. 1998a.

Yield-rainfall relationships in cereal cropping systems in the Ebro river valley of

Spain. Eur. J. Agron. 8, 239-248.

Austin, R.B., Playán, E., Gimeno, J. 1998b. Water storage in soils during the fallow:

prediction of the effects of rainfall pattern and soil conditions in the Ebro valley of

Spain. Agric. Water Manage. 36, 213-231.

Bescansa, P., Imaz, M.J., Virto, I., Enrique, A., Hoogmoed, W.B. 2006. Soil water

retention as affected by tillage and residue management in semiarid Spain. Soil Till.

Res. 87, 19-27.

Cambardella, C.A., Elliot, E.T. 1992. Particulate soil organic-matter changes across a

grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777-783.

Page 37: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

12Capítulo 1

Cantero-Martínez, C., Angas, P., Lampurlanés, J. 2003. Growth, yield and water

productivity of barley (Hordeum vulgare L.) affected by tillage and N fertilization in

Mediterranean semiarid, rainfed conditions of Spain. Field Crops Res. 84, 341-357.

Curtin, D., Wang, H., Selles, F., McConkey, B.G., Campbell, C.A., 2000. Tillage

effects on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Sci.

Soc. Am. J. 64, 2080-2086.

Gregorich, E.G., Carter, M.R., Angers, D.A., Monreal, C.M., Ellert, B.H. 1994.

Towards a minimum data set to assess soil organic matter quality in agricultural

soils. Can J. Soil Sci. 74, 367-385.

Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association

with clay and silt particles. Plant Soil. 191, 77-87.

Hernanz, J.L., López, R., Navarrete, L., Sánchez-Girón, V. 2002. Long-term effects of

tillge systems and rotations on soil structural stability and organic carbon

stratification in semiarid central Spain. Soil Till. Res. 66, 129-141.

Kessavalou, A., Mosier, A.R., Doran, J.W., Drijber, R.A., Lyon, D.J., Heinemeyer, O.,

1998. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and winter

wheat-fallow tillage management. J. Environ. Qual. 27, 1094-1104.

Lampurlanés, J., Angás, P., Cantero-Martínez, C. 2002. Tillage effects on water storage

during fallow and on a barley root growth and yield in two contrasting soils of the

semiarid Segarra region in Spain. Soil Till. Res. 65, 207-220.

López, M.V., Sabre, M., Gracia, R., Arrúe, J.L., Gomes, L. 1998. Tillage effects on soil

surface conditions and dust emission by wind erosion in semiarid Aragón (NE

Spain). Soil Till. Res. 45, 91-105.

López-Bellido, L, López-Garrido, F.J., Fuentes, M., Castillo, J.E., Fernández, E.J. 1997.

Influence of tillage, crop rotation and nitrogen fertilization on soil organic matter

and nitrogen under rain-fed Mediterranean conditions. Soil Till. Res. 43, 277-293.

McAneney, K.J., Arrúe, J.L. 1993. A wheat-fallow rotation in northeastern Spain: water

balance-yield considerations. Agronomie 13, 481-490.

Moreno, F., Murillo, J.M., Pelegrín, F., Girón, I.F. 2006. Long-term impact of

conservation tillage on stratification ratio of soil organic carbon and loss of total and

active CaCO3. Soil Till. Res. 85, 86-93.

Moret, D., Arrúe, J.L., López, M.V., Gracia, R. 2006a. Influence of fallowing practices

on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain).

Agric. Water Manage. 82, 161-176.

Page 38: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

13Introducción general

Moret, D., Arrúe, J.L., López, M.V., Gracia, R. 2006b Winter barley performance under

different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J.

Agron. (en prensa).

Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F. 2001. Total, particulate

organic matter and structural stability of a Calcixeroll soil under different wheat

rotations and tillage systems in a semiarid area of Morocco. Soil Till. Res. 57, 225-

235.

Paustian, K., Collins, H.P., Paul, E.A. 1997. Management controls on soil carbon. P. 15-

49. In : E.A. Paul et al. (ed.). Soil Organic Matter in Temperate Agroecosystems:

Long-term Experiments in North America. CRC Press, Boca Raton, FL, USA.

Reicosky, D.C., Dugas, W.A., Torbert, H.A., 1997. Tillage-induced soil carbon dioxide

loss from different cropping systems. Soil Till. Res. 41, 105-118.

Rodríguez-Murillo, J.C. 2001. Organic carbon content under different types of land use

and soil in peninsular Spain. Biol. Fertil. Soils. 33, 53-61.

Sánchez, M.L., Ozores, M.I., Colle, R., López, M.J., De Torre, B., García, M.A., Pérez,

I. 2002. Soil CO2 fluxes in cereal land use of the Spanish plateau: influence of

conventional and reduced tillage practices. Chemosphere 47, 837-844.

Six, J., Conant, R.T., Paul, E.A., Paustian, K. 2002. Stabilization mechanisms of soil

organic matter: implications for C-saturation of soils. Plant Soil. 241, 155-176.

Six, J., Elliot, E.T., Paustian, K. 1999. Aggregate and soil organic matter dynamics

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358.

Six, J., Elliot, E.T., Paustian, K., Doran, J.W. 1998. Aggregation and soil organic matter

accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62,

1367-1377.

Smith, P. 2004. Carbon sequestration in croplands: the potential in Europe and the

global context. Eur. J. Agron. 20, 229-236.

Tisdall, J.M., Oades, J.M. 1982. Organic matter and water-stable aggregates in soils. J.

Soil Sci. 33, 141-163.

Wander, M.M, Bollero, G.A.1999. Soil quality assessment of tillage impacts in Illinois.

Soil Soc. Am. J. 63, 961-971.

Page 39: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 2

Tillage Effects on Total, Particulate and Mineral-

Associated Soil Organic Carbon in Mediterranean

Dryland Agroecosystems

Page 40: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

17

Tillage Effects on Total, Particulate and Mineral-Associated Soil

Organic Carbon in Mediterranean Dryland Agroecosystems

ABSTRACT

Under semiarid conditions, soil quality and productivity can be improved by

enhancing soil organic matter (SOM) content by means of alternative management

practices. Likewise, some SOM fractions are more directly involved in the increase

of total SOM. In this study we evaluated the feasibility of no-tillage (NT) and

cropping intensification as alternative soil practices to increase SOM. At the same

time, we studied the influence of these management practices on two SOM

fractions (particulate organic matter, POM-C, and the mineral associated carbon,

min-C), in semiarid agroecosystems of the Ebro river valley. Soil samples were

collected at five soil layers (0-5, 5-10, 10-20, 20-30, 30-40 cm depth) during July

2005 at three long-term tillage experiments located at different sites of the Ebro

valley river (NE Spain). Soil bulk density, soil organic carbon (SOC) concentration

and stock, SOC stratification ration, SOC stock, POM-C and min-C were

measured. Higher soil bulk density was observed under NT than under reduced

tillage (RT), subsoil tillage (ST) and conventional tillage (CT). At soil surface (0-5

cm depth), the highest total SOC concentration was measured under NT, followed

by RT, ST and CT, respectively. However, below the 10 cm soil depth the lowest

total SOC concentration was measured under NT at all the sites and at the deepest

soil layer (30-40 cm depth) the greatest total SOC concentration was observed

under CT. A similar trend was observed in the POM-C and min-C, with the

highest contents under NT at soil surface (0-5 cm depth) and the lowest at deeper

soil layers. The Peñaflor site was the only field with greater total SOC stock in the

whole soil profile (0-40 cm) in NT under the continuous cropping (CC) system

compared with the other tillage systems. The NT system and the suppression of the

long-fallowing are viable management practices to increase SOC in semiarid

Mediterranean conditions. However, the benefit of this adoption was only observed

at the surface soil.

Page 41: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

18Capítulo 2

1. Introduction

The soil organic matter (SOM) is a key factor on semiarid agroecosystems

productivity. Soils of semiarid regions are characterised by low SOC content, low water

and nutrient retention and, thus, low inherent soil fertility (Lal, 2004a). In these regions,

low and erratic rainfall, together with high evapotranspiration rates, leads to a low crop

biomass production and, thus, to a limited residue input into the soil. Bauer and Black

(1994) quantified the contribution of SOM to productivity and observed that 1 Mg ha-1

of SOM increased wheat grain yield up to nearly 16 kg ha-1. These authors concluded

that a loss of fertility explained the loss of productivity due to a depletion of SOM.

Reeves (1997), after compiling information from several long-term studies,

concluded that cropping resulted in a general loss of soil organic carbon (SOC) that can

be reduced through rational soil management practices. The influence of different

agricultural management practices on soil C storage or C sequestration has been

reviewed by several authors (Freibauer et al., 2004; Lal, 2004b). Enhancing SOC by soil

management may be mainly achieved by means of reducing SOC decomposition and/or

increasing residue inputs (Paustian et al., 2000).

A reduction in the intensity of tillage has been widely recognized as a successful

strategy to reduce SOC losses (Halvorson et al., 2002; West and Post, 2002; McConkey

et al., 2003). West and Post (2002) analysed the results from 67 long-term agricultural

experiments and concluded that, on average, a shift from conventional tillage (CT) to

no-tillage (NT) can sequester nearly 60 g C m-2 yr-1. Mouldboard ploughing, in CT

systems, accelerates SOM decomposition and C loss from soil to the atmosphere as

CO2. Ploughing creates residue and soil mixing, favouring physical contact between soil

microorganisms and crop residues, and more optimal soil microclimatic conditions for

crop residue decomposition (e.g., higher soil moisture content, temperature and

aeration) (Paustian et al., 1998; Bruce et al., 1999). In contrast, under NT systems, the

absence of soil disturbance produces a modification of surface soil conditions reducing

microbial activity and, therefore, SOM decomposition (Mielke et al., 1986). Several

studies have measured greater soil bulk density values after the adoption of NT (Kay

and VandenBygaart et al., 2002). Increments of bulk density under NT are associated

with reductions in soil porosity that may lead to a more limited oxygen supply for

heterotrophic decomposition. On the other hand, the intensification of the cropping

systems by means of a reduction of the long fallow period, is associated with a greater

Page 42: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

19Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

residue production and, therefore, with an increase in SOC content (Potter et al., 1997;

Halvorson et al., 2002).

The SOM is formed by various components with different structural complexities

that differ in their chemical stability and, consequently, in their turnover rates

(Christensen, 1996; Krull et al., 2003). Several SOC models have been developed in the

last 30 years (Jenkinson and Rayner, 1977; van Veen and Paul, 1981; Parton et al.,

1987). One of the major limitations of these models is that they are composed by

conceptual C pools that do not correspond to experimentally verifiable fractions

(Christensen, 1996). Accordingly, several attempts have been made to set up

measurable C fractions that closely match to the SOC pools described in those models

(Cambardella and Elliot, 1992; Paul et al., 1999; Six et al., 2002). Cambardella and

Elliot (1992) isolated a SOM pool named particulate organic matter (POM), which is

more sensitive to soil management than the total SOM. This fraction is mainly

composed of fine root fragments and other organic debris (Cambardella and Elliot,

1992) and serves as a readily decomposable substrate for soil microorganisms (Mrabet

et al., 2001). Wander et al. (1998) observed a 25% greater SOC under NT than under

CT. However, when POM-C was analysed this difference between tillage systems

achieved a 70%. Another measurable C fraction is the mineral associated-C, which is

the SOM chemically stabilised on the silt and clay surfaces (Hassink, 1997). However,

this is a more stabilized SOM than the POM and, therefore, less sensitive to soil

management.

In semiarid Spain, several studies have been focussed on the effect of soil

management on SOM content (López-Fandos and Almendros, 1995; López-Bellido et

al., 1997; Hernanz et al., 2002; Moreno et al., 2006). The most part of these studies

concluded that a reduction in tillage intensity increases SOM content, especially at soil

surface. However, in these studies, no attempt was made to estimate the effect of soil

management on different SOM fractions.

In this study we present SOM data from three different long-term tillage experiments

located in semiarid Ebro valley (NE Spain). In this region, intensive soil tillage, with

mouldboard ploughing as the main tillage implementation and the cereal-fallow rotation

have been traditional agricultural practices during decades. We hypothesised that a shift

from intensive tillage to more conservative tillage operations may lead to an increase in

SOM as it has been previously observed in other semiarid areas of Spain. At the same

time, the removal of the fallow period in the rotation may help to rise the levels of SOM

Page 43: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

20Capítulo 2

and, thus, to increase soil quality and productivity in the study area. In this respect, we

consider a major issue to quantify the different SOM fractions and to study the role that

these fractions play on SOM dynamics. Therefore, our objectives were to investigate the

influence of different soil tillage and cropping systems on SOC content and distribution

of C between SOM fractions (particulate organic matter and mineral-associated C).

2. Materials and methods

2.1. Sites, tillage and cropping systems

This experiment was conducted at three different long-term tillage experiments

located across the semiarid Ebro river valley (NE Spain). These sites from higher to

lower annual precipitation were: Selvanera (Lleida province), Agramunt (Lleida

province) and Peñaflor (Zaragoza province). Selected site and soil characteristics are

presented in Table 2.1.

In Selvanera (SV) the cropping system consisted of a wheat-barley-wheat-rapeseed

rotation with four tillage treatments: conventional tillage (CT), subsoil tillage (ST),

reduced tillage (RT) and no-tillage (NT). The CT and ST treatments consisted of a

subsoiler tilling respectively at 50 cm and 25 cm depth in August followed in both cases

by a pass with a field cultivator to a depth of 15 cm in October before sowing. The RT

treatment was implemented every October with only one pass of cultivator to a depth of

15 cm. In Agramunt (AG), the cropping system consisted of a barley-wheat rotation

with four tillage treatments: conventional tillage (CT), subsoil tillage (ST), reduced

tillage (RT) and no-tillage (NT). The CT treatment consisted of a pass of mouldboard

ploughing to a depth of 25-30 cm depth every October followed by a pass with a field

cultivator to a depth of 15 cm. The ST treatment consisted of a subsoiler tilling at 25 cm

depth every October followed by a field cultivator to 15 cm depth. The RT treatment

was implemented with one or two passes of cultivator to 15 cm depth every October. In

Peñaflor (PN), two cropping systems were compared, a continuous barley cropping

system (PN-CC) and a barley-fallow rotation (PN-CF). Three tillage systems were

compared at both cropping systems: conventional tillage (CT), reduced tillage (RT) and

no-tillage (NT). The CT treatment consisted of a pass with a mouldboard plough to a

depth of 30 to 35 cm plus a pass with a tractor-mounted scrubber as a traditional

practice to break down large clods. The RT plots were chisel ploughed to a depth of 25

to 30 cm. In the CT and RT plots of the PN-CC system, primary tillage was

implemented every season in October followed by a pass of a sweep cultivator to a

Page 44: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

21Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

depth of 10-15 cm as secondary tillage. However, in the PN-CF rotation, primary tillage

was implemented in March every two seasons, during the fallow phase of the rotation,

while secondary tillage consisted of a cultivator pass to a depth of 15-20 cm in May. At

the three experimental sites, in the NT treatment no tillage operations were done and for

sowing a direct drill planter was used. In this treatment, the soil was kept free of weeds

by spraying total herbicide (glyphosate).

At all sites, tillage treatments were arranged in a randomized complete block design

with three replicates in SV, PN-CC and PN-CF and with four replicates in AG. The size

of each plot was 7x50 m at SV, 9x50 m at AG and 10x33 m at PN-CC and PN-CF.

Table 2.1. Site and soil characteristics in the Ap soil layer.

Experimental site Site and

soil characteristics Selvanera Agramunt Peñaflor

Year of establishment 1987 1990 1989

Latitude 41º 50’N 41º 48’N 41º 44’N Longitude 1º 17’E 1º 07’E 0º 46’W Elevation (m) 475 330 270

Mean annual air temperature (ºC) 13.9 14.2 14.5 Mean annual precipitation (mm) 475 430 390

Soil classification ¶ Xerocrept fluventic

Xerofluvent typic

Xerollic Calciorthid

Ap horizon depth (cm) 37 28 30 pH (H2O, 1:2.5) 8.3 8.5 8.23 EC1:5 (dS m-1) 0.16 0.15 0.29 Water retention (g g-1) -33 kPa 0.16 0.16 0.20 -1500 kPa 0.04 0.05 0.11 Particle size distribution (%) Sand (2000-50 µm) 36.5 30.1 32.4 Silt (50-2 µm) 46.4 51.9 45.5 Clay (< 2 µm) 17.1 17.9 22.2 ¶ USDA classification (Soil Survey Staff, 1975).

2.2. Soil sampling and analyses

Soil samples were collected at five different depths (0-5, 5-10, 10-20, 20-30, 30-40

cm) in July 2005 after crop harvest. For C analyses, a composite sample was prepared

from two samples taken from each plot and depth. Once in the laboratory, the soil was

air-dried and ground to pass a 2-mm sieve. For soil dry bulk density determination, by

Page 45: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

22Capítulo 2

the core method (Grossman and Reinsch, 2002), stainless steel cylinders (height 51 mm,

diameter 50 mm, volume 100 cm3) were used for undisturbed soil sampling. Four soil

cores were taken per plot and soil depth.

A 5 g subsample was used to determine total SOC content by the wet oxidation

method of Walkley and Black (Nelson and Sommers, 1982). The carbon content of the

particulate organic matter (POM-C) and the mineral associated organic matter (min-C)

were separated using a physical fractionation method adapted from Cambardella and

Elliot (1992). Twenty-gram subsamples of soil from each depth, plot and site were

dispersed in 100 ml of 5 g L-1 of sodium hexametaphosphate during 15 h on a reciprocal

shaker. Then, the samples were passed through a 53-µm sieve to separate the POM-C

and the min-C. The material passing through the sieve (min-C) was collected in

aluminium pans and oven dried at 50 ºC overnight. The wet oxidation method of

Walkley and Black was then used to measure the C concentration in the min-C fraction.

The total SOC and min-C contents were expressed on a mass per unit area basis by

multiplying the C concentration values obtained from the oxidation method by the

corresponding soil bulk density values. The POM-C content was determined as:

POM–C content = Total SOC content – Mineral associated-C content [1]

Data were analyzed using the SAS statistical package (SAS Institute, 1990). To

compare the effects of tillage treatments, analysis of variance (ANOVA) for a

randomized block design was made. Differences between means were tested with

Duncan’s multiple range test.

3. Results and discussion

3.1. Soil bulk density

Soil bulk density ranged from 1.28 to 1.55 Mg m-3, from 1.25 to 1.67 Mg m-3, from

1.15 to 1.48 Mg m-3 and from 1.19 to 1.40 at AG, SV, PN-CC and PN-CF, respectively

(Fig. 2.1). At all four fields, it was observed a general increase in soil bulk density from

the 0-5 cm layer to the 5-10 cm soil layer, especially under NT (Fig. 2.1).

At AG, PN-CC and PN-CF the highest soil bulk density corresponded to the NT

treatment, especially in the first 20 cm. However, at SV differences among tillage

treatments were only found in the 5-10 cm soil layer, where greater soil bulk density

was measured under NT and RT than under CT and ST (Fig. 2.1). Several studies have

Page 46: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

23Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

observed greater soil bulk density under NT systems (Rhoton et al., 1993; Wander and

Bollero, 1999; Lampurlanés and Cantero-Martínez, 2003).

Bulk density (Mg m-3) Bulk density (Mg m-3)

0

5

10

15

20

25

30

35

40

1.0 1.2 1.4 1.6 1.80

5

10

15

20

25

30

35

40

1.0 1.2 1.4 1.6 1.8

SVAG

Dep

th (c

m)

0

5

10

15

20

25

30

35

40

1.0 1.2 1.4 1.6 1.8

PN-CF

0

5

10

15

20

25

30

35

40

1.0 1.2 1.4 1.6 1.8

PN-CC

Dep

th (c

m)

STRTNT CT

Fig. 2.1. Soil bulk density profile at Agramunt (AG), Selvanera (SV) and Peñaflor in a

continuous barley cropping system (PN-CC) and in a barley-fallow rotation (PN-CF) as affected

by tillage (CT, conventional tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage).

Bars represent LSD (P<0.05) for comparison among tillage treatments at the same depth, where

significant differences were found.

Page 47: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

24Capítulo 2

3.2. Total SOC

In the 0 to 40 cm soil depth, total SOC concentration values ranged from 5.3 to 22.5

g kg -1 at SV, from 3.7 to 18.8 g kg -1 at AG, from 8.0 to 13.7 g kg -1 at PN-CC and from

7.3 to 11.6 g kg -1 at PN-CF (Fig. 2.2). At the soil surface (0-5 cm depth), a significantly

greater SOC concentration was measured under NT in all the experimental sites. On the

contrary, below 10 cm depth, the SOC concentration under this tillage treatment was

similar (PN) or lower (SV and AG) than the measured in the other tillage treatments.

Thus, at SV, from the 0-5 to the 10-20 soil depth SOC concentration under NT

decreased more than a 90%. At AG and PN-CC, this reduction was close to a 40% and

at PN-CF to a 20%. In general, in the first 10 cm depth, the lowest SOC concentration

corresponded to CT but at deeper soil layers CT had the greatest SOC concentration in

all the sites (Fig. 2.2). Several studies have reported greater SOC at the soil surface

under NT than under other tillage systems (Potter et al., 1997; Deen and Kataki, 2003;

Puget and Lal; 2005). In other similar experiments carried out in semiarid Spain, a SOC

accumulation at the soil surface has also been observed when soil management shifted

from conventional tillage to conservation tillage (Hernanz et al., 2002; Moreno et al.,

2006). In NT systems, crop residues are left on the soil surface implying a much slower

crop residue incorporation and decomposition when compared with tilled systems in

which crop residues are mechanically incorporated into the soil. This slower

decomposition of crop residues under NT leads to the accumulation of SOC in the upper

soil layers (Reicosky et al., 1995).

The accumulation of SOC at the soil surface has been observed as a promising soil

quality indicator (Franzluebbers, 2002). This author developed the so-called

stratification ratio, defined as, the proportion of SOC at the soil surface in relation with

the SOC at deeper soil layers. This ratio permits an easy comparison between tillage

treatments. Franzluebbers (2002) concluded that SOC stratification ratios higher than 2

would be an indication that soil quality might be improving. In our experiment, NT

showed the highest stratification ratio in all the experimental sites. The greatest

stratification ratios were measured at SV, with values equal or greater than 2 in all the

tillage treatments (Table 2.2). In contrast, at Peñaflor (PN-CC and PN-CF), there were

observed the smallest ratios with values lower than 2 in all the tillage treatments. At

AG, the CT treatment showed a SOC stratification ratio lower than 2 whereas NT

showed a ratio greater than 5 (Table 2.2). Greater SOC stratification ratios imply better

soil conditions for crop growth due to the positive effects of SOM on soil surface

Page 48: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

25Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

processes such as erosion control, water infiltration and nutrient conservation

(Franzluebbers, 2002).

SOC (g kg-1) SOC (g kg-1)

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

SV0

5

25

30

35

40

0 5 10 15 20 25

AG

10

Dep

th (c

m)

15 20

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

Fig. 2.2. Vertical distribution of the soil organic carbon (SOC) concentration at Agramunt

(AG), Selvanera (SV) and Peñaflor in a continuous barley cropping system (PN-CC) and in a

barley-fallow rotation (PN-CF) as affected by tillage (CT, conventional tillage; ST, subsoil

tillage; RT, reduced tillage; NT, no-tillage). Bars represent LSD (P<0.05) for comparison

among tillage treatments at the same depth, where significant differences were found.

PN-CF0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

PN-CC

Dep

th (c

m)

STRTNT CT

Page 49: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

26Capítulo 2

Table 2.2. Soil organic carbon (SOC) stratification ratio (0-5:30-40) at Agramunt (AG),

Selvanera (SV) and Peñaflor in a continuous barley cropping system (PN-CC) and in a barley-

fallow rotation (PN-CF) for different tillage treatments (CT, conventional tillage; ST, subsoil

tillage; RT, reduced tillage; NT, no-tillage).

Sites Tillage treatments

NT RT ST CT

SV 4.2 3.1 2.7 2.0

AG 5.1 3.0 2.6 1.3

PN-CC 1.7 1.2 - 1.0

PN-CF 1.6 1.3 - 1.0

When the whole soil profile (0-40 cm) was considered, at AG and PN-CF similar

SOC content was measured among tillage treatments (Table 2.3). At PN-CC a

significantly greater SOC content was measured under NT than under CT and RT over

the whole soil profile (Table 2.3). On the contrary, the SOC value at SV was significant

greater under the tilled treatments (CT, RT and ST) than under NT (Table 2.3).

Therefore, in sites where the CT treatment consisted of mouldboard ploughing (AG and

PN) a greater SOC content in the whole soil profile was measured under NT than under

CT. However, at SV, where CT consisted of subsoil ploughing (without soil profile

inversion), the SOC content was higher under CT than under NT. This fact would

indicate that intensive tillage with mouldboard ploughing induces a distribution of the

SOM along the soil profile and accelerates SOM decomposition thus modifying soil

microclimate conditions (e.g. soil temperature, aeration and water content) and exposing

aggregate-protected SOM to microbial attack (Paustian et al., 1997; Peterson et al.,

1998).

In our study, the intensification of the cropping systems led to an increase in SOC.

Greater SOC was measured under the PN-CC system than under the PN-CF rotation in

all the tillage treatments (Table 2.3). This was due to the different amount of crop

residues returned to the soil. In the PN-CC system, crop residues are returned to the

field every season, whereas in the PN-CF rotation crop residues are returned every two

years. Other similar studies have concluded that the elimination of the fallow period

from the rotation resulted in an increase in the SOC content (Collins et al., 1992;

Campbell et al., 1995; Potter et al., 1997; Halvorson et al., 2002).

Page 50: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

27Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

Table 2.3. Cumulative soil organic carbon (SOC) content at Agramunt (AG), Selvanera (SV)

and Peñaflor in a continuous barley cropping system (PN-CC) and in a barley-fallow rotation

(PN-CF) under different tillage treatments (CT, conventional tillage; ST, subsoil tillage; RT,

reduced tillage; NT, no-tillage).

Cumulative SOC (Mg ha-1)

AG SV

Soil

depth

(cm) NT RT ST CT NT RT ST CT

0-5 12.8a¶ 9.1b 7.7c 5.6d 14.5a 13.6a 11.4b 10.3b

0-10 22.4a 18.0b 15.2c 11.6d 23.9ab 25.7a 21.8b 20.8b

0-20 33.2a 30.5ab 28.0b 23.7c 36.9a 39.9a 38.3a 37.4a

0-30 41.1a 39.5a 37.4a 36.7a 46.6b 50.6a 50.7a 51.1a

0-40 46.8a 46.2a 44.1a 46.5a 55.4b 61.0a 61.6a 63.1a

PN-CC PN-CF

NT RT CT NT RT CT

0-5 9.2a 6.0b 5.4b 7.5a 5.6b 4.9b

0-10 16.6a 12.4b 11.2b 13.9a 11.5b 10.0c

0-20 28.6a 24.7b 23.0b 24.4a 21.9b 20.9b

0-30 39.5a 35.9ab 34.9b 34.5a 32.2b 32.0b

0-40 50.5a 47.4b 47.5b 44.4a 42.0a 43.6a ¶ Within each site and depth values followed by a different letter are significantly different at P <0.05.

3.3. Particulate organic matter carbon (POM-C) and mineral-associated carbon (min-

C)

The SOC fractions (POM-C and min-C) were only determined at SV, AG and PN-

CC. Following the same trend observed with the total SOC concentration, the greatest

POM-C was measured under NT at the soil surface (0-5 cm) (Table 2.4). At this depth,

POM-C ranged from 0.8 (in CT at PN-CC) to 6.4 Mg C ha-1 (in NT at AG) (Table 2.4).

These findings are in agreement with other studies measuring greater POM-C under NT

than under CT at soil surface (Wander et al., 1998; Hussain et al., 1999; Bayer et al.,

2006; Sainju et al., 2006). However, below 10 cm depth, in general, significantly greater

POM-C was observed under CT (Table 2.4). Mrabet et al. (2001), in semiarid Morocco,

measured slightly greater POM-C under CT than under NT at 7-20 cm soil depth.

The POM fraction has been defined as a labile SOM pool mainly consisting of plant

residues partially decomposed and not associated with soil minerals (Cambardella and

Elliot, 1992; Six et al., 2002). In our study, as we suggested with the total SOC, the lack

Page 51: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

28Capítulo 2

of soil disturbance under NT produced an accumulation of POM at the surface soil.

However, when intensive tillage was applied (e.g., CT) two effects could have taken

place: firstly, a redistribution of POM along the soil profile, which explains the increase

in POM under CT compared with NT and, secondly, a faster mineralization of POM at

the topsoil due to better soil microclimatic conditions for microbial activity.

Similarly to what was observed for the SOC content, over the whole soil profile (0-

40 cm depth), greater POM-C was measured under NT than under CT at the AG and

PN-CC sites despite the lack of statistical significance (Table 2.4). At SV, the greatest

POM-C was measured under the CT treatment and the lowest under NT. At AG and

PN-CC, the CT treatment consisted of mouldboard ploughing, with soil profile

inversion, thus accelerating POM decomposition.

Table 2.4. Distribution of particulate organic matter C (POM-C) content in the plough layer (0-

40 cm depth) at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous barley cropping

system (PN-CC) as affected by tillage (CT, conventional tillage; ST, subsoil tillage; RT,

reduced tillage; NT, no-tillage).

POM-C (Mg ha-1)

AG SV PN-CC

Soil

depth

(cm) NT RT ST CT NT RT ST CT NT RT CT

0-5 6.4a¶ 3.5b 4.0b 1.7c 5.8a 5.1a 4.3a 4.1a 2.9a 1.0b 0.8b

5-10 4.0a 3.5ab 2.7bc 1.9c 1.7b 3.6a 3.5a 3.3a 1.2a 1.0a 0.5a

10-20 3.0b 3.9a 4.0a 4.1a 1.3c 1.1c 2.9b 3.7a 0.8b 1.3ab 1.8a

20-30 2.8ab 1.8b 2.1b 5.0a 1.5b 1.8b 2.4b 3.5a 2.5a 2.3a 1.1b

30-40 1.6ab 1.0b 1.2b 2.7a 1.2b 0.8b 1.9a 2.3a 0.7b 0.5b 1.5a

0-40 17.9a 13.8a 14.0a 15.4a 11.5a 12.5a 14.9a 17.0a 8.2a 6.0a 5.7a ¶ Within each site and depth values followed by a different letter are significantly different at P <0.05.

Regarding the mineral-associated C (min-C) content, this carbon fraction was

significantly greater under NT than under the other tillage treatments at the soil surface

(0-5 cm depth) (Table 2.5). However, from 20 cm to 40 cm soil depth significantly

lower min-C was measured under NT compared with the other tillage treatments. The

min-C resulted from the decomposition of the POM and the subsequent protection by

silt and clay particles (Denef et al., 2004). In our study, NT increased the amount of

min-C at the soil surface (0-10 cm soil depth) due to the greater accumulation of POM

under NT than under CT.

Page 52: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

29Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

Table 2.5. Distribution of mineral-associated C (min-C) content in the plough layer (0-40 cm

depth) at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous barley cropping system

(PN-CC) as affected by tillage (CT, conventional tillage; ST, subsoil tillage; RT, reduced

tillage; NT, no-tillage).

Min-C (Mg ha-1)

AG SV PN-CC

Soil

depth

(cm) NT RT ST CT NT RT ST CT NT RT CT

0-5 6.3a¶ 5.6a 3.6b 3.9b 8.6a 8.5a 7.1b 6.3b 6.3a 5.0b 4.6b

5-10 5.6a 5.4a 4.8a 4.1a 7.7a 8.6a 6.9a 7.2a 6.1a 5.5b 5.3b

10-20 7.8a 8.6a 8.8a 8.1a 11.7a 12.9a 13.7a 12.3a 11.2a 11.0a 10.0a

20-30 5.1b 7.1ab 7.3ab 8.0a 8.8a 9.0a 11.0a 10.2a 8.3b 9.3b 10.8a

30-40 4.0b 5.8ab 5.5ab 7.1a 7.5b 9.6a 9.8a 9.7a 10.2b 11.3a 11.1a

0-40 28.8a 32.4a 30.0a 31.2a 44.5a 48.6a 48.4a 46.2a 42.2a 42.1a 41.8a¶ Within each site and depth values followed by a different letter are significantly different at P <0.05.

3.4. Relative C pool size to SOC

In all the tillage treatments and sites, the major contribution to the total SOC

corresponded to the min-C fraction, founding the highest percentages at PN (75-90%)

and the lowest at AG (50-70%) (Table 2.6). The min-C fraction has been associated

with the passive C pool that is the major constituent of the SOC (Parton et al., 1988;

Sherrod et al., 2005). The effect of tillage treatment varied among experimental sites.

Thus, whereas at AG and PN the lowest contribution of min-C to the total SOC was

found under NT for both the soil surface and the whole soil profile, at SV was found

under CT and under ST at the soil surface (Table 2.6). Obviously, the contrary occurred

for the POM-C pool.

Hussain et al. (1999) found a greater contribution of POM-C to the SOC under NT

than under CT only when the soil surface was considered. They concluded that a

reduction in the decomposition rates of crop residues under NT led to a greater

contribution of the POM-C over the total SOC. In these sense, when all soil profile is

considered in our study (0-40 cm), lower contribution of POM-C to the total SOC was

observed (Table 2.6). Thus, for example, at the SV site this C fraction under NT

contributed with a 32% to the total SOC from 0 to 10 cm depth and only with a 21% for

the 0-40 cm soil depth.

Page 53: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

30Capítulo 2

Table 2.6. Soil C fraction size (POM-C, particulate organic matter carbon; min-C, mineral-

associated carbon) relative to the total soil organic carbon (SOC) in the 0-10 cm and 0-40 cm

soil layers at Agramunt (AG), Selvanera (SV) and Peñaflor in a continuous barley cropping

system (PN-CC) under different tillage treatments (CT, conventional tillage; ST, subsoil tillage;

RT, reduced tillage; NT, no-tillage).

% of POM-C in SOC % of min-C in SOC Site Soil depth

(cm) NT RT ST CT NT RT ST CT

AG 0-10 47 39 44 31 53 61 56 69 0-40 38 30 32 33 62 70 68 67

SV 0-10 32 34 36 35 68 66 64 64 0-40 21 20 24 27 80 79 78 73

PN-CC 0-10 25 16 - 12 75 84 - 88 0-40 16 13 - 12 83 89 - 88

4. Summary and conclusions

The NT system increased the SOC content at the soil surface (0-10 cm depth) due to

the accumulation of crop residues in that layer. In contrast, the CT treatment

incorporated crop residues into the soil and created better conditions for microbial

decomposition at the surface. However, when deeper soil layers were considered the

amount of SOC accumulated was greater under CT than under NT due to the placement

of crop residues all along the soil profile. In general, in the whole soil profile (0-40 cm

depth), similar o slightly greater SOC content was measured under NT than under CT

with the exception of the SV site. At SV, the only site where CT consisted in a vertical

soil disturbance, greater SOC content in the whole soil profile was measured under CT

than under NT.

The two C pools studied (particulate organic matter C, POM-C, and the mineral-

associated carbon, min-C) contributed to the SOC increment due to the adoption of NT.

The POM pool, formed mainly by crop residues under different decomposition stages,

increased on the soil surface under NT due to the accumulation of crop residues. At the

same time, the min-C fraction formed from the decomposition of the POM-C was

greater under NT due to the presence of higher amounts of POM-C compared with CT

management.

The removal of the fallowing season from the traditional cereal-fallow rotation in the

study area led to an increase of the SOC content. Greater residue production under

continuous cropping increased the SOC content along the whole soil profile and in all

the tillage treatments studied.

Page 54: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

31Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

In semiarid agroecosystems of the Ebro valley, enhancing soil organic carbon

contents is a key factor to improve soil quality and productivity. The adoption of certain

agricultural management practices, such as conservation tillage, especially NT, and the

elimination of the long-fallowing practice from the rotation have a potential effect to

sequester SOC in the dryland soils of this Mediterranean region. Nevertheless, after

more than 15 years of tillage testing, this beneficial effect of NT on SOC sequestration

has been only observed in the first 10 cm of soil.

References

Bauer, A., Black, A.L. 1994. Quantification of the effect of soil organic matter content

on soil productivity. Soil Sci. Soc. Am. J. 58, 185-193.

Bayer, C., Mielniczuk, J., Giasson, E., Martin-Neto, L., Pavinato, A. 2006. Tillage

effects on particulate and mineral-associated organic matter in two tropical

brazilian soils. Commun. Soil Sci. Plant Anal. 37, 389-400.

Bruce, J.P., Frome, M., Haites, E., Janzen, H., Lal, R., Paustian, K. 1999. C

sequestration in soils. J. Soil Water Conserv. 54, 382-389.

Cambardella, C., Elliot, E.T. 1992. Particulate soil organic matter changes across a

grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777-783.

Campbell, C.A., McConkey, B.G., Zentner, R.P., Dyck, F.B., Selles, F., Curtin, D.

1995. C sequestration in a brown Chernozem as affected by tillage and rotation.

Can. J. Soil Sci. 75: 449-458.

Collins, H.P., Rasmussen, P.E., Douglas Jr., C.L. 1992. Crop rotation and residue

management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J.

56, 783-788.

Christensen, B.T. 1996. Matching measurable soil organic matter fractions with

conceptual pools in simulation models of carbon turnover: revision of model

structure. P. 143-159. In: D.S. Powlson et al. (ed.). Evaluation of soil organic

matter models. NATO ASI Series, Springer-Verlag.

Deen, W., Kataki, P.K. 2003. Carbon sequestration in a long-term conventional versus

conservation tillage experiment. Soil Till. Res. 74, 143-150.

Denef, K., Six, J., Merckx, R., Paustian, K. 2004. Carbon sequestration in

microaggregates of no-tillage soils with different clay mineralogy. Soil Sci. Soc.

Am. J. 68, 1935-1944.

Page 55: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

32Capítulo 2

Franzluebbers, A.J. 2002. Soil organic matter stratification as an indicator of soil

quality. Soil Till. Res. 66, 95-106.

Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J. 2004. C sequestration in the

agricultural soils of Europe. Geoderma 122, 1-23.

Grossman R.B., Reinsch, T.G. 2002. Bulk density and linear extensibility. P. 201-228.

In: J.H. Dane and G.C. Topp (ed.). Methods of Soil Analysis. Part 4-Physical

Methods, SSSA Book Series No. 5, Madison, WI, USA.

Halvorson, A.D., Peterson, G.A., Reule, C.A. 2002. Tillage system and crop rotation

effects on dryland crop yields and soil carbon in the Central Great Plains. Agron.

J. 94, 1429-1436.

Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association

with clay and silt particles. Plant Soil. 191, 77-87.

Hernanz, J.L., López, R., Navarrete, L., Sánchez-Girón, V. 2002. Long-term effects of

tillge systems and rotations on soil structural stability and organic carbon

stratification in semiarid central Spain. Soil Till. Res. 66, 129-141.

Hussain, I., Olson, K.R., Ebelhar, S.A. 1999. Long-term tillage effects on soil chemical

properties and organic matter fractions. Soil Sci. Soc. Am. J. 63, 1665-1641.

Jenkinson, D.S., Rayner, J.H. 1977. The turnover of soil organic matter in some of the

Roamthamsted classical experiments. Soil Sci. 123, 298-305.

Kay, B.D., VandenBygaart, A.J. 2002. Conservation tillage and depth stratification of

prorosity and soil organic matter. Soil Till. Res. 66, 107-118.

Krull, E.S., Baldock, J.A., Skjemstad, J.O. 2003. Importance of mechanisms and

processes of the stabilisation of soil organic matter for modelling carbon turnover.

Funct. Plant Biol. 30, 207-222.

Lal, R. 2004a. Soil carbon sequestration to mitigate climate change. Geoderma. 123, 1-

22.

Lal, R. 2004b. Carbon sequestration in dryland ecosystems. Environ. Managem. 33,

528-544.

Lampurlanés, J., Cantero-Martínez, C. 2003. Soil bulk density and penetration

resistance under different tillage and crop management systems and their

relationship with barley root growth. Agron. J. 95, 526-536.

López-Bellido, L., López-Garrido, F.J., Fuentes, M., Castillo, J.E., Fernández, E.J.

1997. Influence of tillage, crop rotation and nitrogen fertilization on soil organic

Page 56: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

33Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

matter and nitrogen under rain-fed Mediterranean conditions. Soil Till. Res. 43,

277-293.

López-Fandos, C., Almendros, G. 1995. Interactive effects of tillage and crop rotations

on yield and chemical properties of soils in semi-arid central Spain. Soil Till. Res.

36, 45-57.

McConkey, B.G., Liang, B.C., Campbell, C.A., Curtin, D., Moulin, A., Brandt, S.A.,

Lafond, G.P. 2003. Crop rotation and tillage impact on carbon sequestration in

Canadian prairie soils. Soil Till. Res. 74, 81-90.

Mielke, L.N., Doran, J.W., Richards, K.A. 1986. Physical environment near the surface

of plowed and no-tilled soils. Soil Till. Res. 7, 355-366.

Moreno, F., Murillo, J.M., Pelegrín, F., Girón, I.F. 2006. Long-term impact of

conservation tillage on stratification ratio of soil organic carbon and loss of total

and active CaCO3. Soil Till. Res. 85, 86-93.

Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F. 2001. Total, particulate

organic matter and structural stability of a Calcixeroll soil under different wheat

rotations and tillage systems in a semiarid area of Morocco. Soil Till. Res. 57,

225-235.

Nelson, D.W., Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. P.

539-579. In: A.L. Page et al. (ed.), Methods of Soil Analysis, Part 2, 2nd Edition

Agronomy, Vol. 9. Soil Science Society of America, Madison, WI, USA.

Parton, W.J., Stewart, J.W.B., Cole, C.V. 1988. Dynamics of C, N, P and S in grassland

soils: a model. Biogeochemistry 5, 109-131.

Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D,.S. 1987. Analysis of factors

controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc.

Am. J. 51, 1173-1179.

Paul, E.A., Harris, D., Collins, H.P., Schulthess, U., Robertson, G.P. 1999. Evolution of

CO2 and soil carbon dynamics in biologically managed, row-crop agroecosystems.

Appl. Soil Ecol. 11, 53-65.

Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N. 1998. CO2 mitigation by

agriculture: an overview. Climatic Change 40, 135-162.

Paustian, K., Collins, H.P., Paul, E.A. 1997. Management controls on soil carbon. P. 15-

49. In: E.A. Paul et al. (ed.) Soil Organic Matter in Temperate Agroecosystems:

Long-term Experiments in North America, CRC Press, Boca Raton, FL, USA.

Page 57: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

34Capítulo 2

Paustian, K., Six, J., Elliot, E.T., Hunt, H.W. 2000. Management options for reducing

CO2 emissions from agricultural soils. Biogeochemistry 48, 147-163.

Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones, O.R., Lyon, D.J., Tanaka, D.L.

1998. Reduced tillage and increasing cropping intensity in the Great Plains

conserves soil C. Soil Till. Res. 47, 207-218.

Potter, K.N., Jones, O.R., Torbert, H.A., Unger, P.W. 1997. Crop rotation and tillage

effects on organic carbon sequestration in the semiarid southern Great Plains. Soil

Sci. 162, 140-147.

Puget, P., Lal, R. 2005. Soil organic carbon and nitrogen in a Mollisol in central Ohio as

affected by tillage and land use. Soil Till Res. 80, 201-213.

Reeves, D.W. 1997. The role of soil organic matter in maintaining soil quality in

continuous cropping systems. Soil Till. Res. 43, 131-167.

Reicosky, D.C., Kemper, W.D., Lagdale, G.W., Douglas Jr., C.L., Rasmussen, P.E.

1995. Soil organic matter changes resulting from tillage and biomass production.

J. Soil Water Conserv. 50, 253-261.

Rhoton, F.E., Bruce R.R., Buehring, N.W., Elkins, G.B., Langdale, C.W., Tyler, D.D.

1993. Chemical and physical characteristics of four soil types under conventional

and no-tillage systems. Soil Till. Res. 28, 51-61.

Sainju, U.M., Lenssen, A., Caesar-Tonthat, T., Waddell, J. 2006. Tillage and crop

rotation effects on dryland soil and residue carbon and nitrogen. Soil Sci. Soc.

Am. J. 70, 668-678.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC,

USA.

Sherrod, L.A., Peterson, G.A., Westfall, D.G., Ahuja, L.R. 2005. Soil organic carbon

pools after 12 years in no-till dryland agroecosystems. Soil Sci. Soc. Am. J. 69,

1600-1608.

Six, J., Conant, R.T., Paul, E.A., Paustian, K. 2002. Stabilization mechanisms of soil

organic matter: implications for C-saturation of soils. Plant Soil 241, 155-176.

Soil Survey Staff, 1975. Soil taxonomy: a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook, 436. US Gov. Print.

Office, Washington, D.C., USA.

van Veen, J.A., Paul, E.A. 1981. Organic carbon dynamics in grassland soils. 1.

Background information and computer simulation. Can. J. Soil Sci. 61, 185-201.

Page 58: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

35Tillage Effects on Total Soil Organic Carbon in Mediterranean Dryland Agroecosystems

Wander, M.M., Bidart, M.G., Aref, S. 1998. Tillage impacts on depth distribution of

total and particulate organic matter in three Illinois soils. Soil Sci. Soc. Am. J. 62,

1704-1711.

Wander, M.M, Bollero, G.A.1999. Soil quality assessment of tillage impacts in Illinois.

Soil Soc. Am. J. 63, 961-971.

West, T.O., Post, W.M. 2002. Soil organic carbon sequestration rates by tillage and crop

rotations: a global data analysis. Soil Sci. Soc. Am. J. 66, 1930-1946.

Page 59: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 3

Soil Organic Matter Fractions in Relation to Soil

Aggregation: Effects of Tillage and Cropping

Intensification under Semiarid Conditions

Page 60: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

39

Soil Organic Matter Fractions in Relation to Soil Aggregation: Effects

of Tillage and Cropping Intensification under Semiarid Conditions

ABSTRACT

Soil aggregation plays an important role in soil organic matter (SOM)

stabilization. In semiarid agroecosystems of the Ebro valley soils are characterised

by low SOM and a weak structure. In this study we investigated the effect of tillage

systems (no-tillage, NT; reduced tillage, RT and conventional tillage, CT) and

cropping system intensification (barley-fallow rotation, CF, vs. continuous barley,

CC) on the protection of different SOM fractions by soil aggregates on a loam soil

(Xerollic Calciorthid). Total soil organic carbon (SOC), water-stable aggregate size

distribution, total aggregate organic C, intra-aggregate particulate organic matter

C (iPOM-C), mineral-associated organic C (min-C) and free light fraction C (free

LF) were measured at three soil depths (0-5, 5-10 and 10-20 cm). At the soil surface

(0-5 cm depth) and in both cropping systems, greater SOC were measured in NT

compared with RT and CT. These differences continued at the 5-10 cm soil layer in

the CC system but not in the CF rotation. During the determination of the

aggregate stability in water, slaking caused the breakage of macroaggregates

resulting in greater microaggregate content, particularly, under RT and CT. In the

CC system, the greater macroaggregate stability observed under NT than under

RT and CT at the soil surface was explained by a higher total aggregate C under

NT. However, in the CF rotation, higher fine iPOM-C (250-53 µm) under NT was

the reason of the macroaggregate differences among tillage systems. The other

aggregate C fractions studied did not explain the effect of tillage in aggregate

stability. Therefore, iPOM-C was a better indicator than total aggregate C in

order to explain differences in soil aggregation and SOM dynamics among tillage

systems in our conditions.

Page 61: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

40Capítulo 3

1. Introduction

Soil organic matter (SOM) can be used as a suitable soil quality and productivity

indicator (Bauer and Black, 1994; Karlen et al., 1997). SOM plays an important role in

a wide range of soil properties and processes such as soil structure (Oades, 1993), water

dynamics (Lado et al., 2004) and cation exchange capacity (Smettem et al., 1992). In

the last years, a special concern about SOM dynamics in agricultural ecosystems has

started to come up. The Kyoto Protocol, adopted in December 1997, recognizes

agricultural soils as potential sources of greenhouse gases that must be identified and

reduced (Bruce et al., 1999).

To achieve a better understanding of the role that agricultural practices play in the

global climate change, a better knowledge on the mechanisms involved in control

carbon storage and release from soils is needed. Recently, Freibauer et al. (2004)

reviewed numerous strategies for increasing soil carbon stock, identifying the

environmental side effects and impacts on farm income for each strategy. Two of these

practices were the intensification of cropping systems and the reduction of tillage

intensity.

Intensification of cropping systems increases the amount of carbon entering to the

soil through a reduction of the fallow duration. In the semiarid Great Plains of North

America, Halvorson et al. (2002) reported more than 27% annual carbon return to the

soil from a continuous wheat system as compared with a fallow-wheat rotation. Similar

studies have concluded that a reduction of the fallow period is associated with a greater

residue production and, therefore, with an increase in soil organic carbon (SOC) content

(Collins et al., 1992; Campbell et al., 1995; Juma et al., 1997; Potter et al., 1997; Saber

and Mrabet, 2002; McConkey et al., 2003).

Tillage, principally mouldboard ploughing, contributes to the mixing of fresh crop

residues with soil thus modifying soil profile characteristics (e.g., aeration, moisture and

temperature regimes) and promoting soil microbial activity (Reicosky et al., 1995;

Paustian et al., 1998; Six et al., 1998; Bruce et al., 1999). Also, tillage continually

exposes soil to wetting/drying and freeze/thaw cycles at the surface, making aggregates

more susceptible to break down and to release protected SOM that will become more

available for decomposition (Paustian et al., 1997). Several studies have concluded that

a reduction of tillage intensity, especially with no-tillage, provides a greater SOC

content in the surface soil (López-Fando and Almendros, 1995; Janzen et al., 1998;

Deen and Kataki, 2003). Kern and Johnson (1993) compiled results from several tillage

Page 62: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

41Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

studies throughout the USA and concluded that higher SOC contents in no-tillage (NT)

versus conventional tillage (CT) are only observed in the first 8 cm depth, with almost

no differences below 15 cm.

A number of SOM pools or fractions have been defined. Each pool is characterised

by an inherent rate of decomposition or turnover time. Parton et al. (1987) defined three

SOM fractions with different turnover time: i) active SOM, consisting of live microbes

and microbial products (turnover time of 1-5 yr); ii) slow SOM, consisting of physically

protected SOM (turnover time of 20-40 yr) and iii) passive SOM, chemically

recalcitrant (turnover time of 200-1500 yr). Cambardella and Elliot (1992) established a

physical separation method to isolate particulate organic matter (POM), concluding that

this POM fraction closely matches the characteristics of the slow SOM pool described

before. The authors presented POM as the pool that is depleted as a result of cultivation.

However, the passive pool has been associated with a more recalcitrant SOM protected

by silt and clay (Parton et al., 1993). Sherrod et al. (2005) related this passive pool with

the mineral associated organic C described by Cambardella and Elliot (1992).

Soil aggregation plays an important role in SOM stabilization. Soil aggregates

protect SOM from microbial accessibility and, therefore, from subsequent

decomposition (Golchin et al., 1994; Six et al., 2002). Protection of SOM within soil

aggregates against microbial decomposition will be greatest with higher aggregate

stability and lower aggregate turnover (Krull et al., 2003). Initially, Tisdall and Oades

(1982) presented a conceptual model of aggregate hierarchy in which different organic

agents bind microaggregates together into macroaggregates. They concluded that soil

management controls macroaggregate dynamics without affecting microaggregation.

Later, Six et al. (1998, 1999) isolated different size POM fractions from aggregates and

proposed a conceptual model of aggregate turnover and SOM dynamics for NT and CT

systems. They concluded that under CT, new SOM is less stabilized because of a slower

rate of microaggregate formation within macroaggregates due to a faster turnover rate of

macroaggregate in CT compared to NT.

Soils in the Mediterranean region have low SOM contents. Traditional soil

management practices in these agricultural areas are long-fallowing and conventional

tillage with mouldboard ploughing as the main tillage practice. Few studies have been

carried out in order to determine the effects of traditional soil management practices on

SOC content under these semiarid Mediterranean conditions (López-Fando and

Almendros, 1995; Mrabet et al., 2001; Hernanz et al., 2002). Likewise, little

Page 63: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

42Capítulo 3

information exists about the influence of soil management practices on SOM fractions

related to soil structure in semiarid areas.

The objective of this study was to quantify the effect of different tillage and cropping

systems on SOC content, soil aggregate stability, aggregate organic C, aggregate POM

and mineral associated C in a dryland field of semiarid Aragon (NE Spain).

2. Materials and methods

2.1. Site description and soil sampling

In July 2003, immediately after harvest, soil samples were collected at three depths

(0-5, 5-10 and 10-20 cm) from a long-term tillage experiment established in 1989 at

Peñaflor, Zaragoza (41º44’30´´N, 0º46’18´´W). The site is located in a semiarid area of

the Ebro river valley with an average annual rainfall of 390 mm and an average annual

air temperature of 14.5 ºC. The soil type is a loam (fine-loamy, mixed, thermic Xerollic

Calciorthid) according to the USDA soil classification (Soil Survey Staff, 1975).

General soil characteristics for the plough layer are given in Table 3.1 (López et al.,

1998). Three tillage treatments were compared: conventional tillage (CT), with

mouldboard ploughing to 35-40 cm depth as primary tillage; reduced tillage (RT), with

chisel ploughing to 25-30 cm depth as primary tillage; and no-tillage (NT). In both CT

and RT, primary tillage was followed by a pass of a sweep cultivator (10-15 cm depth).

At the same time, two cropping systems were compared: continuous cropping (CC) and

a cereal-fallow rotation (CF). At the CC system, tillage was implemented every fall

before barley sowing. However, in the CF rotation, tillage was implemented every two

years during the season in which barley was not sown. The experiment design was a

randomized complete block design with three replicates. Treatment plot size was 33.5 m

x 10 m.

From each plot and depth, a composite soil sample was prepared from samples taken

at two points with a flat spade and placed in crush-resistant, air-tight containers in order

to avoid aggregate breaking during sample transportation. Once in the laboratory, field-

moist soil was passed through a 8-mm sieve. The sieved soil was air dried and stored at

room temperature. A soil subsample was taken from 0-5, 5-10 and 10-20 cm soil depth

and analyzed for total SOC content.

Page 64: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

43Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

2.2. Soil aggregate separation

Aggregate size separation was made by a wet sieving method adapted from Elliot

(1986). Before sieving, a slaking pretreatment was applied to the soil. This pretreatment

consisted in air drying followed by rapid immersion in water. During slaking, a high

level of disruption occurs because of the rapid build up of air pressure as capillarity

pulls water into the aggregate (Kemper and Rosenau, 1986).

Table 3.1. Physical and chemical soil properties at the experimental site (López et al., 1998).

Depth (cm)

0-20 20-40

Particle size distribution (g kg-1)

Sand (2000 < Ø < 50 µm) 293 279 Silt (50 < Ø < 2 µm) 484 460 Clay (Ø < 2 µm) 223 261

pH (H2O, 1:2.5) 8.3 8.3

Electrical conductivity (1:5) (dS m-1) 0.25 0.28

CaCO3 (g kg-1) 432 425

A soil subsample of 100 g was located on the top of a 2000-µm sieve and submerged

for 5 min in deionized water at room temperature. Then, the sieving was manually done

moving the sieve up and down 3 cm, 50 times in 2 min in order to achieve aggregate

separation. Afterwards, the stable aggregates (>2000-µm) were washed off the sieve

into an aluminium pan. Soil plus water that passed through the sieve was poured onto

the next finer sieve (250-µm and 53-µm) and the same process was repeated. The

smallest fraction (<53-µm, silt and clay) was centrifuged 10 min at 2500 rpm and

collected into an aluminium pan. Aluminium pans with the aggregate fractions retained

were oven dried (50 ºC) for 24 h. Once dried, aggregate fractions were weighed and

stored in glass jars at room temperature. Finally, four aggregate size fractions were

obtained: i) >2000-µm (large macroaggregates), ii) 250 to 2000-µm (small

macroaggregates), iii) 53 to 250-µm (microaggregates), and iv) <53-µm (silt- plus clay-

size particles).

Page 65: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

44Capítulo 3

2.3. SOM size-density fractionation

Separation of free light fraction, LF, (particulate organic matter, POM, occurring

between aggregates) and iPOM (POM occurring within aggregates) was made

according to the flotation method of Six et al. (1998). The day before analysis, a 6-g

aggregate sample was oven dried (110 ºC). After cooling in a desiccator (30 min), the

aggregate sample was weighed and suspended in 35 mL of 1.85 g cm-3 of sodium

polytungstate solution in a 50-mL graduated conical centrifuge tube. The subsample

was mixed by slowly shaking by hand (10 strokes) with care in order to avoid aggregate

breaking. Once the subsample was well-suspended, the material remaining on the cap

and sides of the centrifuge tube was washed with 10 mL of sodium polytungstate

solution. The centrifuge tubes with the suspended samples were placed inside a vacuum

chamber for 10 min (138 kPa). Vacuum allows aggregates to evacuate air entrapped

within them. After 20 min equilibration, tubes were balanced (one versus one) with

sodium polytungstate and then put in the centrifuge (2500 rpm) at 20 ºC for 60 min. The

floating material (free LF), together with sodium polytungstate, was aspirated and

filtered using a 20-µm nylon filter as shown in the Fig. 3.1.

Fig. 3.1. Detail of the flotation method used for the separation of the light fraction.

Page 66: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

45Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

Free LF was rinsed thoroughly with deionized water to remove sodium polytungstate

and transferred into an aluminum pan. Sodium polytungstate removed was cleaned and

recycled as described by Six et al. (1999). Free LF was oven dried at 50 ºC. The tubes

with the heavy fraction, HF, (iPOM + sand) were filled with 40 mL of water before

centrifuging them (2500 rpm) at 20 ºC for 10 min. The supernatant was removed and

the centrifuge process repeated twice. The HF was dispersed in 0.5% sodium

hexametaphosphate by shaking for 18 h on a reciprocal shaker. The dispersed HF was

passed trough a 2000-, 250-, and/or 53-µm sieve depending on the aggregate size being

analysed. Figure 3.2 shows the fractionation sequence with all the different sieves used

for each aggregate-size fraction and the SOM fraction resulting from each aggregate

size.

2.4. Carbon analyses

Total SOC content of each soil sample was measured using the wet oxidation method

of Walkley and Black (Nelson and Sommers, 1982). Total C content of each aggregate

size fraction and iPOM-C was measured by dry combustion, on a LECO CHN-1000

analyzer (Leco Corp., St. Joseph, MI). During the dry combustion procedure organic C

is oxidized to CO2 and carbonates decomposed. Because of the presence of carbonates

in the soil samples used in this experiment, inorganic carbon (IC) content of each

fraction was determined in order to calculate organic carbon as:

Organic carbon = Total carbon (from dry combustion) - Inorganic carbon [1]

The IC content was measured by the modified pressure-calcimeter method (Sherrod

et al. 2002). A 0.2-g subsample was dropped into a 20-mL Wheaton serum bottle

(Wheaton Science Products, Millville, NJ) together with a vial containing 2-mL of the

acid reagent of 6 M HCl containing 3% by weight of FeCl2 · 4H2O. The FeCl2 was used

to eliminate the release of CO2 from organic matter. After the 20-mL serum bottle was

perfectly sealed, the reaction started by vigorously shaking the flask to insure a

complete mixing of the acid with the soil sample. After two hours, CO2 evolved from

the reaction was measured by inserting an hypodermic needle, attaching it to a pressure

transducer and voltage meter and recording the voltage output.

Page 67: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

46Capítulo 3

aggr

egat

es 8

000-

200

0 µm

aggr

egat

es 2

000-

250

µm

aggr

egat

es 2

50-5

3 µm

silt

+ cl

ay

tota

l C

tota

l C

tota

l C

tota

l C

2000

µm

sie

ve

250

µm s

ieve

53 µ

m s

ieve

100

g

(Air

drie

d so

il, <

8 m

m)

free

LF

HF

disp

ersi

on +

si

evin

g

flota

tion

2000

µm

sie

ve

250

µm

sie

ve

53 µ

m s

ieve

iPO

M +

san

d >2

000

µm

iPO

M +

san

d 25

0-20

00 µ

m

iPO

M 5

3-25

0 µ

m

mS

OC

53-

250

µm

free

LF

HF

disp

ersi

on +

si

evin

g

flota

tion

250

µm s

ieve

53 µ

m s

ieve

iPO

M +

san

d 25

0-20

00 µ

m

iPO

M 5

3-25

0 µ

m

mS

OC

53-

250

µm

free

LF

HF

disp

ersi

on +

siev

ing

flota

tion

53 µ

m s

ieve

iP

OM

53-

250

µm

mS

OC

53-

250

µm

(A >

2000

)

(A 2

50-2

000)

(A 5

3-25

0)

(B 5

3-25

0) (B

250

-200

0)

(C 5

3-25

0)

Fig.

3.2

. A

ggre

gate

fra

ctio

natio

n se

quen

ce.

LF (

light

fra

ctio

n);

iPO

M (

intra

ggre

gate

par

ticul

ate

orga

nic

mat

ter)

; H

F (h

eavy

fra

ctio

n=

iPO

M+s

and)

; m

SOC

(min

eral

soil

orga

nic

carb

on).

Page 68: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

47Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

A calibration curve was developed by determining the voltage for a group of

different IC concentration standards: 0.25, 0.5, 1, 2, 3, 5, 10 g kg-1. The equation from

the lineal regression was used to calculate IC concentration of the different samples.

The C concentrations for free LF were determined on a Carlo Erba NA 1500 CN

analyzer (Carlo Erba, Milan, Italy) due to the smaller sample sizes. Mineral-associated

soil organic C concentration was determined by difference between total aggregate C

and particulate organic matter C (free LF and iPOM):

Min-C = total aggregate C – (free LF-C + iPOM-C) [2]

Differences in sand content among size fractions and treatments, and the fact that

sand particles do not specially contribute to the dynamics of soil organic matter (Elliot

et al., 1991) made more appropriate to express C concentration on a sand-free basis:

Cfraction Sand-free Cfraction = [3] 1 - [sand proportion]fraction

2.5. Statistical analyses

Data were analyzed using the SAS statistical package (SAS Institute, 1990). To

compare the effects of tillage treatments an analysis of variance (ANOVA) for a

randomized block design with three replicates was made. Differences between means

were tested with Duncan’s multiple range test.

3. Results and discussion

3.1. Total SOC content

In the CC system, differences in SOC content were found at the surface soil layers

(0-5 and 5-10 cm depth) and at the 5-10 cm depth, where SOC content was greater

under NT than under CT and RT (Table 3.2). In the CF rotation differences between

treatments were found in the 0- to 5-cm depth with also greater SOC content in NT

plots. This result agrees with other similar studies carried out in semiarid Mediterranean

areas. Thus, in semiarid central Spain, Hernanz et al. (2002) obtained similar SOC

contents in the 0-10 cm layer, with greatest SOC content under NT. In the same study

area, López-Fando and Almendros (1995) concluded that NT, when compared with CT,

Page 69: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

48Capítulo 3

favours surface accumulation of SOC. Mrabet et al. (2001), in semiarid Morocco,

suggested that these differences in SOC content among NT and other tillage treatments

may be related with higher oxidation conditions, a higher release of soluble organic

compounds and a greater microbial activity under CT than under NT. Other reasons that

may contribute to the higher SOC content in NT are the breaking of soil aggregates due

to tillage operations and higher erosion processes that accelerate the removal of C-rich

surface soil in CT systems (Peterson et al., 1998).

Slightly higher SOC contents were observed in the CC system as compared with the

CF rotation (Table 3.2). We suggested that differences in the amount of crop residues

returned to the field resulted in a different SOC content between the CC system and the

CF rotation. In the CC system, crop residues are returned every season to the field,

whereas in the CF rotation crop residues are returned every two years. Several studies

have shown that a reduction of the fallow period in the rotation results in an increases in

the SOC content (Collins et al., 1992; Campbell et al., 1995; Potter et al., 1997;

Halvorson et al., 2002).

Table 3.2. SOC content in the plough layer as affected by tillage (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage) and cropping system (CC, continuous barley system; CF, barley-

fallow rotation).

Soil depth (cm) SOC (g m-2)

CC CF

CT RT NT CT RT NT

0-5 547 bt 576 b 853 a 515 b 490 b 671 a

5-10 582 b 590 b 723 a 566 a 515 a 573 a

10-20 1148 a 1119 a 1167 a 1073 a 1016 a 1062 a

t For the same cropping system and soil depth values followed by a different letter are significantly different at P < 0.05.

3.2. Soil aggregate distribution

Water-stable aggregate size distribution presented a similar trend in all tillage

treatments and cropping systems. Microaggregates (53-250 µm) accounted for more

than 50% of the total soil and were the predominant water-stable size class (Fig. 3.3).

The proportion of macroaggregates (>2000 µm and 250-2000 µm size classes) was

similar in all the treatments and depths, with values ranging between 2 and 20% (Fig.

3.3). The slaking process that occurs when dry soil aggregates are wetted quickly at

Page 70: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

49Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

atmospheric pressure causes rupture and disintegration of the aggregate (Kemper and

Rosenau, 1986). Although slaking led to a breakage of aggregates in the three tillage

treatments, this effect was especially significant in CT and RT, where differences

between macroaggregates from dry aggregate size distribution and from water-slaked

distribution were greater. For example, in CC at the 0-5 cm depth, the proportion of

macroaggregates (>250 µm) in the initial dry aggregate size distribution was 78% in

CT, 73% in RT and 87% in NT (data not shown). However, the proportion of

macroaggregates (>250 µm) after the slaking process (water-stable aggregates)

decreased to 9% in CT, 12% in RT and 33% in NT (Fig. 3.3). Therefore, tillage led to a

decrease in macroaggregate stability as observed in other similar experiments (Angers

et al., 1993; Franzluebbers and Arshad, 1996; Six et al., 2000). The greater

macroaggregate stability under NT compared to CT and RT resulted in a greater amount

of large and small macroaggregates under NT for both cropping systems (Fig. 3.3).

Microaggregate (53-250 µm) content was lower under NT than under CT and RT,

especially in the CC system with values greater than 20% in CT and RT compared to

NT (Fig. 3.3). This difference among tillage systems can be explained by the breakage

of macroaggregates into smaller aggregates due to the slaking process (Cambardella and

Elliot, 1993).

The silt and clay fraction (<53 µm) was not affected by tillage in any of the both

cropping systems. This lack of differences in this fraction implies that after slaking

microaggregates were not reduced to silt and clay particles. Therefore, this suggests that

microaggregates were more stable than macroaggregates (>250 µm) as has been

reported previously (Tisdall and Oades, 1982; Elliot, 1986; Oades and Waters, 1991).

3.3. Soil aggregate C

There were significant differences among tillage treatments in the sand-free organic

C concentration of the wet-sieved aggregates in the surface layer (0-5 cm) of the CC

system (Fig. 3.4). In this cropping system, aggregate C concentration from small

macroaggregates (250-2000 µm) increased significantly as tillage intensity decreased in

agreement with observations by Beare et al. (1994) and Wright and Hons (2004). Thus,

in this aggregate size class C concentration under NT was about 5 and 10 g C kg-1

greater than under RT and CT, respectively (Fig. 3.4). Likewise, greater C

concentrations under NT compared with CT and RT were observed in the

microaggregate size class for the CC system. Although this greater aggregate C content

b

Page 71: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

50Capítulo 3

in NT found throughout the 0- to 20-cm soil layers, significant differences were only

found in the surface layer (0-5 cm) (Fig. 3.4).

CTNT RT

CC CF

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

b a

0-5 cm

ab b

ab

b

a

a a

a

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

0-5 cm

a

a

bba

ba

a

aa

b

bg ag

greg

ate

g-1 d

ry s

oil

g ag

greg

ate

g-1 d

ry s

oil

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

aab

5-10 cm aa

aa

b

a aa

b

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

5-10 cma

aa

ba a

a

aa

a

abg ag

greg

ate

g-1 d

ry s

oil

g ag

greg

ate

g-1 d

ry s

oil

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

10-20 cm

a

a

aa

a

a

aaa

a

aa

0.0

0.2

0.4

0.6

0.8

1.0

>2000 250-2000 53-250 <53

10-20 cm

b

a

ba

ab

b

b

aa

b

ag ag

greg

ate

g-1 d

ry s

oil

g ag

greg

ate

g-1 d

ry s

oil

Aggregate size class (µm) Aggregate size class (µm)

Fig. 3.3. Water-stable aggregate size distribution at the 0-5, 5-10, 10-20 cm soil depths as

affected by cropping system (CC, continuous cropping system; CF, barley-fallow rotation) and

tillage (CT, conventional tillage; RT, reduced tillage; NT, no-tillage). For the same cropping

system and depth, different letters indicate significant differences at P<0.05.

As previously indicated, we found higher macroaggregate amount (>2000 µm and

250-2000 µm) in NT for the same cropping system and depth (Fig. 3.3). Thus, greater

macroaggregate stability in NT may be related with a higher SOC aggregate

Page 72: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

51Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

concentration, as suggested by Kemper and Koch (1966) and Chaney and Swift (1984).

However, in RT and CT, slaking resulted in a reduction of macroaggregates and an

increase of microaggregates with low organic C content. Cambardella and Elliot (1993)

suggested that slaking destroys less-stable small macroaggregates (250-2000 µm) in

cultivated soils, leaving more-stable small macroaggregates (250-2000 µm) enriched in

organic C.

In the CF rotation, although there were differences in aggregate distribution among

tillage treatments for different size classes and depths (Fig. 3.3), SOC concentration

within aggregates was similar among tillage treatments in all aggregate size classes

(Fig. 3.4). Chaney and Swift (1984) suggested that total SOC may not be sufficient to

explain differences in aggregate stability and that certain SOM fractions may play a

more important role. In our study, aggregate organic C could explain differences in

aggregate distributions in the CC system. However, in the CF rotation there was not a

clear trend in the aggregate organic C that could explain aggregate distribution

differences among tillage treatments.

3.4. Intra-aggregate particulate organic C

Intra-aggregate particulate organic matter C (iPOM-C) values obtained in this

experiment ranged between 0.8 and 8 g C kg-1 sand free aggregate, but the most part of

these values varied from 0.8 to 5 g C kg-1 sand free aggregate (Fig. 3.5). These values

were in the range given by other authors (Six et al., 1999; De Gryze et al., 2005).

In both CC and CF cropping systems there were significant differences in the iPOM-

C concentration of aggregates at the soil surface (0-5 cm). In the CC system, fine (B 53-

250) and coarse (B 250-2000) iPOM-C from small macroaggregates were greater in NT

compared with CT and RT treatments (See caption of Fig. 3.5 for details). However, in

the CF rotation only the fine iPOM-C from small macroaggregates (B 53-250) was

greater in NT than in CT and RT. Several authors have concluded that loss of soil

aggregate stability due to cultivation is related with a reduction in iPOM (Cambardella

and Elliot, 1993; Besnard et al., 1996; Gale et al., 2000).

Fine iPOM-C from small macroaggregates (B 53-250) was a better indicator than

other iPOM-C size classes and even better than total aggregate organic carbon, to

explain the effects of tillage on aggregate stability and SOC dynamics. As it was

explained before, in the CF rotation, differences in aggregate size distribution among

tillage treatments could not be explained by total aggregate organic C. However, the

Page 73: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

52Capítulo 3

significantly greater fine iPOM-C content measured in the small macroaggregates

fraction (B 53-250) under

Fig. 3.4. Sand-free aggregate C content distribution at the 0-5, 5-10, 10-20 cm soil depths as

affected by cropping system (CC, continuous barley system; CF, barley-fallow rotation) and

tillage (CT, conventional tillage; RT, reduced tillage; NT, no-tillage). ND: not determined. For

the same cropping system and depth, different letters indicate significant differences at P<0.05.

CTNT RTCC CF

g C

kg-1

san

d-fre

e ag

greg

ates

g C

kg-1

san

d-fre

e ag

greg

ates

a

Aggregate size class (µm)

0

5

>2000 250-2000 53-250 <53

0-5 cm

10

15

20

25

30

0

5

10

15

20

25

30

>2000 250-2000 53-250 <53

0-5 cma

ba a a a ab c a a aa ab a a

ND ND

g C

kg-1

san

d-fre

e ag

greg

ates

g C

kg-1

san

d-fre

e ag

greg

ates

0

5

10

15

20

25

30

>2000 250-2000 53-250 <53

5-10 cm

0

5

15

>2000 250-2000 53-250 <53

30 5-10 cm 25 a 20

aa a aa a a a a a a aa aaa10 a

NDND

g C

kg-1

san

d-fre

e ag

greg

ates

g C

kg-1

san

d-fre

e ag

greg

ates

0

5

15

>2000 250-2000 53-250 <53

10-20 cm

0

5

10

15

20

25

30

>2000 250-2000 53-250 <53

10-20 cm

ND

a

aa a

aaa a

a

30

25

20 aa aa a aa

10 a a

ND

Aggregate size class (µm)

Page 74: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

53Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

Fig. 3.5. Distribution of sand-free intraaggregate particulate organic matter C (iPOM-C)

concentration at the 0-5, 5-10, 10-20 cm soil depths as affected by cropping system (CC,

continuous cropping; CF, barley-fallow rotation) and tillage (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage). A: iPOM-C in large macroaggregates (>2000 µm); B: iPOM-C

in small macroaggregates (250-2000 µm); C: iPOM-C in microaggregates (53-250 µm). ND:

not determined. For the same cropping system and depth, different letters indicate significant

differences at P<0.05.

CTNT RT

CC CF

g C

kg-1

san

d-fre

e ag

greg

ates

g C

kg-1

san

d-fre

e ag

greg

ates

0

2

4

6

8

10

12

A >2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250 0

2

4

6

8

>2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250

10

12 0-5 cm 0-5 cm

a aaa aa a ab a ab ac b ab c ND ND ND ND ND ND

A

g C

kg-1

san

d-fre

e ag

greg

ates

g C

kg-1

san

d-fre

e ag

greg

ates

0

2

4

6

8

A >2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250

10

12

0

2

4

6

8

>2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250

10

125-10 cm 5-10 cm

a a aaa a a ab

a a aa aabb a abND ND ND ND ND ND

A

g C

kg-1

san

d-fre

e ag

greg

ates

0

2

4

6

8

A >2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250

10-20 cm

a

aaa aND ND ND

a a

a

a

10

12

g C

kg-1

san

d-fre

e ag

greg

ates

0

2

4

6

8

10

12

A >2000 A 250-2000

A 53-250 B 250-2000

B 53-250 C 53-250

10-20 cm

aa aa

a ND ND ND a aaa

Aggregate size class (µm) Aggregate size class (µm)

Page 75: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

54Capítulo 3

NT than under CT (Fig. 3.5) explains the higher proportion of small macroaggregates

(250-2000 µm) found under NT. Six et al. (1998) also found greater fine iPOM-C in

macroaggregates under NT than under CT and concluded that a lower macroaggregate

turnover in NT compared to CT leads to greater formation and stabilization of fine

iPOM-C.

This fine iPOM-C (B 53-250) is related with the C protected within the

microaggregates occluded by the macroaggregates. In the conceptual model of

aggregate dynamics proposed by Six et al. (1999), the faster turnover in CT compared

to NT leads to a lower time between macroaggregate formation and disruption and thus

to a lower time for C formation and stabilization within microaggregates formed within

macroaggregates.

As it was observed in the total SOC and in the aggregate organic C, the iPOM-C

differences among tillage treatments were less pronounced when deeper soil layers are

considered. Lower C concentrations in deeper soil layers led to a reduction in iPOM-C

differences as observed by other authors (Beare, 1994; De Gryze et al., 2005).

3.5. Mineral-associated and light fraction C

The C associated to the soil mineral particles (silt and clay) has been considered as

the most recalcitrant and stable C fraction of total soil C (Tisdall and Oades, 1982). In

our study, the mineral-associated soil organic C (min-C) showed significant differences

among tillage treatments in the surface soil layer (0-5 cm depth) of both cropping

systems and in the deepest layer (10-20 cm depth) in the CC system (Fig. 3.6). In the

CC system, the min-C was greater under NT than under RT and CT, especially at soil

surface (0-5 cm soil depth). This trend was not followed in the CF rotation where the

min-C under CT was similar or slightly greater than under NT (Fig. 3.6). Six et al. (1998) did

not find significant differences between CT and NT in this C fraction in the upper 20

cm of soil. However, Beare et al. (1994) in a similar experiment found differences in

min-C in the surface layer (0-5 cm) in both macro- and microaggregates. They

concluded that besides POM other soil C fractions were lost under CT compared to NT.

The values of free light fraction (LF) were similar between tillage treatments within a

cropping system and aggregation size class (data not shown). These values ranged

between 3 and 5 g C LF per kg of sand-free aggregate for the macroaggregate size class

and 0.3 and 1 g C LF per kg of sand-free aggregate for the microaggregate size class.

Page 76: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

55Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

0

5

10

15

20

g C

kg

>2000 250-2000 53-250

a a

a aa

a

5-10 cm

-1 s

and-

free

aggr

egat

es

ND

CTNT RT

0

5

>2000 250-2000 53-250

g C

kg-1

san

d-fre

e ag

greg

ates

a a a

a

aa

0

5

10

15

20

>2000 250-2000 53-250

5-10 cm

ND

a a

a a aa

0

5

>2000 250-2000 53-250

10-20 cm

ND

10

15

20

g C

kg-1

san

d-fre

e ag

greg

ates

CC

0

5

>2000 250-2000 53-2500

5

>2000 250-2000 53-250

0-5 cm

a

ab

ND

a a

b

a 10

15

20

g C

kg-1

san

d-fre

e ag

greg

ates

0-5 cm

ND

bab

a

b ab

a10

15

20

g C

kg-1

san

d-fre

e ag

greg

ates

10-20 cm

ND

b

ab

a

a

b

a 10

15

20

g C

kg-1

san

d-fre

e ag

greg

ates

CF

Aggregate size class (µm) Aggregate size class (µm)

Fig. 3.6. Mineral associated soil organic C (min-C) distribution at the 0-5, 5-10, 10-20 cm soil

depths as affected by cropping system (CC, continuous cropping; CF, barley-fallow rotation)

and tillage (CT, conventional tillage; RT, reduced tillage; NT, no-tillage). ND: not determined.

For the same cropping system and depth, different letters indicate significant differences at

P<0.05.

Page 77: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

56Capítulo 3

4. Summary and conclusions

Under the dryland semiarid conditions of our study area, tillage and cropping system

affected SOC content and soil aggregation. Thus, in both continuous barley cropping

(CC) and barley-fallow rotation (CF), SOC content was greater under no-tillage (NT)

than under conventional tillage (CT) and reduced tillage (RT) but only when the soil

surface layer (0-10 cm) was considered.

Tillage increased SOM losses due to better soil conditions for SOM decomposition

(better soil aeration and microclimatic conditions and greater contact between crop

residues and soil microorganisms). Another tillage effect on SOM decomposition is the

release of the SOM fraction previously protected within soil macroaggregates (>250

µm) following the breakage of these aggregates as a result of both the mechanical effect

of tillage implementation and the low stability of soil macroaggregates in our tilled

systems. Nevertheless, the microaggregate size class (53-250 µm) was not affected by

tillage. In the CC system, the greater stability showed by soil macroaggregates under

NT was accompanied by a greater SOC within these aggregates. Therefore, the absence

of soil disturbance under NT leads to longer time for SOC stabilization within

macroaggregates (lower turnover) and lower mineralization rates. However, in the CF

rotation, although greater macroaggregate stability was also observed under NT in the

surface (0-5 cm) layer, no differences in aggregate organic C were observed between

tillage treatments. This fact indicates that other SOM fractions were implied in this SOC

stabilization within NT soil macroaggregates in the CF rotation.

Particulate organic matter (POM) has been defined as a labile, physically protected

SOM fraction. The fine iPOM of the small soil macroaggregates which is the SOM

fraction of POM with a size between 250 and 53 µm entrapped in macroaggregates of

2000 to 250 µm, was the only SOM fraction that explained differences in soil aggregate

and SOM dynamics among tillage systems in our conditions under both CC and CF

cropping systems. Other SOM fractions studied, such as the mineral-associated C,

presented greater contents under NT contents in the CC system but not in the CF

rotation and, therefore, could not be considered as sensitive indicators of the changes

occurring in aggregate and SOM dynamics due to tillage operations.

In conclusion, in semiarid dryland agroecosystems of the Ebro valley, the adoption

of NT and the intensification of cropping system are two management strategies that

may greatly contribute to increase soil C sequestration due to a lower turnover of

macroaggregates and, thus, to a greater C stabilization within these macroaggregates.

Page 78: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

57Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

References

Angers, D.A., Samson, N., Légère, A. 1993. Early changes in water-stable aggregation

induced by rotation in a soil under barley production. Can. J. Soil Sci. 73, 51-59.

Bauer, A., Black, A.L. 1994. Quantification of the effect of soil organic matter content

on soil productivity. Soil Sci. Soc. Am. J. 58, 185-193.

Beare, M.H., Hendrix, P.F., Coleman, D.C. 1994. Water-stable aggregates and organic

matter fractions in conventional and no-tillage soils. Soil Sci. Soc. Am. J. 58, 777-

786.

Besnard, E., Chenu, C., Balesdent, J., Puget, P., Arrouays, D. 1996. Fate of particulate

organic matter in soil aggregates during cultivation. Eur. J. Soil Sci. 47, 495-503.

Bruce, J.P., Frome, M., Haites, E., Janzen, H., Lal, R., Paustian, K. 1999. C

sequestration in soils. J. Soil Water Conserv. 54, 382-389.

Cambardella, C.A., Elliot, E.T. 1992. Particulate soil organic-matter changes across a

grassland cultivation sequence. Soil Sci. Soc. Am. J. 56, 777-783.

Cambardella, C.A., Elliot, E.T. 1993. Carbon and nitrogen distributions in aggregates

from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57, 1071-1076.

Campbell, C.A., McConkey, B.G., Zentner, R.P., Dyck, F.B., Selles, F., Curtin, D.

1995. C sequestration in a brown Chernozem as affected by tillage and rotation.

Can. J. Soil Sci. 75, 449-458.

Collins, H.P., Rasmussen, P.E., Douglas Jr, C.L. 1992. Crop rotation and residue

management effects on soil carbon and microbial dynamics. Soil Sci. Soc. Am. J.

56, 783-788.

Chaney, K., Swift, R.S. 1984. The influence of organic matter on aggregate stability in

some British soils. J. Soil Sci. 35, 223-230.

Deen, W., Kataki, P.K. 2003. C sequestration in a long-term conventional versus

conservation tillage experiment. Soil Till. Res. 74, 143-150.

De Gryze, S., Six J., Brits, C., Merckx, R. 2005. A quantification of short-term

macroaggregate dynamics influences of wheat residue input and texture. Soil Biol.

Biochem. 37, 55-66.

Elliot, E.T. 1986. Aggregate structure and carbon, nitrogen and phosphorous in native

and cultivated soils. Soil Sci. Soc. Am. J. 50, 627-633.

Elliot, E.T., Palm, C.A., Reuss, D.E., Monz, C.A. 1991. Organic matter contained in

soil aggregates from a tropical chronosequence, correction for sand and light

fraction. Agric. Ecosyst. Environ. 34, 443-451.

Page 79: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

58Capítulo 3

Franzluebbers, A.J., Arshad, M.A. 1996. Water-stable aggregation and organic matter in

four soils under conventional and zero tillage. Can. J. Soil Sci. 76, 387-393.

Freibauer, A., Rounsevell, M.D.A., Smith, P., Verhagen, J. 2004. C sequestration in the

agricultural soils of Europe. Geoderma 122, 1-23.

Gale, W.J., Cambardella, C.A., Bailey, T.B. 2000. Root-derived carbon and the

formation and stabilization of aggregates. Soil Sci. Soc. Am. J. 64, 201-207.

Golchin, A., Oades, J.M., Skjemstad, J.O., Clarke, P. 1994. Soil structure and carbon

cycling. Aust. J. Soil Res. 32, 1043-1068.

Halvorson, A.D., Peterson, G.A., Reule, C.A. 2002. Tillage system and crop rotation

effects on dryland crop yields and soil carbon in the Central Great Plains. Agron.

J. 94, 1429-1436.

Hernanz, J.L., López, R., Navarrete, L., Sánchez-Girón, V. 2002. Long-term effects of

tillage systems and rotations on soil structural stability and organic carbon

stratification in semiarid central Spain. Soil Till. Res. 66, 129-141.

Janzen, H.H., Campbell, C.A., Izaurralde, R.C., Ellert, B.H., Juma, N., McGill, W.B.,

Zentner, R.P. 1998. Management effects on soil C storage on the Canadian

prairies. Soil Till. Res. 47, 181-195.

Juma, N.G., Izaurralde, R.C., Robertson, J.A., McGill, W.B. 1997. Crop yield and soil

organic matter trends over 60 years in a Typic Cryoboralf at Breton, Alberta. P.

273-281. In: E.A. Paul et al. (ed.), Soil Organic Matter in Temperate

Agroecosystems, Long-Term Experiments in North America. CRC Press, Boca

Raton, FL, USA.

Karlen, D.L., Mausbach, M.J., Doran, J.W., Cline R.G., Harris, R.P. and Schuman, G.E.

1997. Soil quality, a concept, definition and framework for evaluation. Soil Sci.

Soc. Am. J. 61, 4-10.

Kemper, W.D., Koch, E.J. 1966. Aggregate stability of soils from western United States

and Canada. USDA. Technical Bulletin No. 1355.

Kemper, W.D., Rosenau, R.C. 1986. Aggregate stability and size distribution. P. 425-

442. In A. Klute (Ed.) Methods of Soil Analysis. America Society of Agronomy,

Soil Science Society of America. Part 1. 2nd ed. Agronomy 9. Madison,

Wisconsin. USA.

Kern, J.S., Johnson, M.G. 1993. Conservation tillage impacts on national soil and

atmospheric carbon levels. Soil Sci. Soc. Am. J. 57, 200-210.

Page 80: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

59Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

Krull, E.S., Baldock, J.A., Skjemstad, J.O. 2003. Importance of mechanisms and

processes of the stabilisation of soil organic matter for modelling carbon turnover.

Funct. Plant Biol. 30, 207-222.

Lado, M., Paz, A., Ben-Hur, M. 2004. Organic matter and aggregate size interactions in

infiltration, seal formation and soil loss. Soil Sci. Soc. Am. J. 68, 935-942.

López-Fando, C., Almendros, G. 1995. Interactive effects of tillage and crop rotations

on yield and chemical properties of soils in semi-arid Spain. Soil Till. Res. 36, 45-

57.

López, M.V., Sabre, M., Gracia, R., Arrúe, J.L., Gomes, L. 1998. Tillage effects on soil

surface conditions and dust emissions by wind erosion in semiarid Aragón (NE

Spain). Soil Till. Res. 45, 91-105.

McConkey, B.G., Liang, B.C., Campbell, C.A., Curtin, D., Moulin, A., Brandt, S.A.,

Lafond, G.P. 2003. Crop rotation and tillage impact on carbon sequestration in

Canadian prairie soils. Soil Till. Res. 74, 81-90.

Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F. 2001. Total, particulate

organic matter and structural stability of a Calcixeroll soil under different wheat

rotations and tillage systems in a semiarid area of Morocco. Soil Till. Res. 57,

225-235.

Nelson, D.W., Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. P.

539-579. In: A.L. Page et al. (ed.), Methods of Soil Analysis, Part 2, 2nd Edition

Agronomy, Vol. 9. Soil Science Society of America, Madison, WI, USA.

Oades, J.M. 1993. The role of biology in the formation, stabilization and degradation of

soil structure. In: L. Brussaard and M.J. Kooistra (ed.), Int. Workshop on Methods

of Research on Soil Structure / Soil Biology Interrelationships. Geoderma 56, 377-

400.

Oades, J.M., Waters, A.G. 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29 ,

815-828.

Parton, W.J., Scurlock, J.M.O., Ojima, D.S., Gilmanov, T.G., Scholes, R.L., Schimel,

D.S., Kirchner, T., Meanut, J.C., Seastedt, T., Garcia Moya, E., Kamnalrut, A.,

Kinyamario, J.L. 1993. Observations and modelling of biomass and soil organic

matter dynamics for the grassland biome worldwide. Clobal Biogeochem. Cycles

7, 785-809.

Page 81: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

60Capítulo 3

Parton, W.J., Schimel, D.S., Cole, C.V., Ojima, D.S. 1987. Analysis of factors

controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc.

Am. J. 51, 1173-1179.

Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N. 1998. CO2 mitigation by

agriculture: an overview. Climatic Change 40, 135-162.

Paustian, K., Collins, H.P., Paul, E.A. 1997. Management controls on soil carbon. P. 15-

49. In: E.A. Paul et al. (ed.), Soil Organic Matter in Temperate Agroecosystems,

Long-term Experiments in North America. CRC Press, Boca Raton, FL, USA.

Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones, O.R., Lyon, D.J., Tanaka, D.L.

1998. Reduced tillage and increasing cropping intensity in the Great Plains

conserves soil C. Soil Till. Res. 47, 207-218.

Potter, K.N., Jones, O.R., Torbert, H.A., Unger, P.W. 1997. Crop rotation and tillage

effects on organic carbon sequestration in the semiarid southern Great Plains. Soil

Sci. 162, 140-147.

Reicosky, D.C., Kemper, W.D., Langdale, G.W., Douglas, C.L., Rasmussen, P.E. 1995.

Soil organic matter changes resulting from tillage and biomass production. J. Soil

Water Conserv. 50, 253-261.

Saber, N., Mrabet, R. 2002. Impact of no-tillage and crop sequence on selected soil

quality attributes of a Vertic Calcixeroll soil in Morocco. Agronomie 22, 451-459.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC,

USA.

Sherrod, L.A., Dunn, G., Peterson, G.A., Kolberg, R.L. 2002. Inorganic carbon analysis

by modified pressure-calcimeter method. Soil Sci. Soc. Am. J. 66, 299-305.

Sherrod, L.A., Peterson, G.A., Westfall, D.G., Ahuja, L.R. 2005. Soil organic carbon

pools after 12 years in no-till dryland agroecosystems. Soil Sci. Soc. Am. J. 69,

1600-1608.

Six, J., Conant, R.T., Paul, E.A., Paustian, K. 2002. Stabilization mechanisms of soil

organic matter: implications for C-saturation of soils. Plant and Soil 241, 155-176.

Six, J., Elliot E.T., Paustian, K. 1999. Aggregate and soil organic matter dynamics

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358.

Six, J., Elliot, E.T., Paustian, K., Doran, J.W. 1998. Aggregation and soil organic matter

accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62,

1367-1377.

Page 82: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

61Soil Organic Matter Fractions in Relation to Soil Aggregation: Tillage and Cropping Intensification

Six, J., Paustian, K., Elliot, E.T., Combrink, C. 2000. Soil structure and organic matter,

I. Distribution of aggregate-size classes and aggregate-associated carbon. Soil Sci.

Soc. Am. J. 64, 681-689.

Smettem, K.R.J., Rovira, S.A., Wace, B.R., Simon, A. 1992. Effect of tillage and crop

rotation on the surface stability and chemical properties of a red-brown earth

(Alfisol) under wheat. Soil Till. Res. 22, 27-40.

Soil Survey Staff. 1975. Soil taxonomy, a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook 436. US Gov. Print.

Office, Washington, DC, USA.

Tisdall, J.M., Oades, J.M. 1982. Organic matter and water-stable aggregates in soils. J.

Soil Sci. 33, 141-163.

Wright, A.L., Hons, F.M. 2004. Soil aggregation and carbon and nitrogen storage under

soybean cropping sequences. Soil Sci. Soc. Am. J. 68, 507-513.

Page 83: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 4

Tillage Effects on Carbon Stabilization in Soil

Microaggregates under Semiarid Mediterranean

Conditions

Page 84: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

65

Tillage Effects on Carbon Stabilization in Soil Microaggregates under

Semiarid Mediterranean Conditions

ABSTRACT Enhancing soil organic C (SOC) is a key factor in semiarid Mediterranean

agroecosystems where weak soil structure and low crop yields are common

attributes. Among the different processes of SOC stabilization, the formation of

soil microaggregates within macroaggregates seems to play an important role in

the increase of soil organic matter associated to the adoption of conservation tillage

systems. This study was aimed to show whether NT compared to CT promoted

microaggregate formation and microaggregate-C stabilization within

macroaggregates in Mediterranean semiarid areas. Soil samples were collected

during July 2004 at three long-term tillage experiments located at different sites of

the Ebro valley river (NE Spain). Total SOC, soil macroaggregate content,

percentage of microaggregate contained within macroaggregate, total

microaggregate-associated C, intra-microaggregate particulate organic matter C,

mineral-associated microaggregate C were measured at three soil depths (0-5, 5-10

and 10-20 cm). Results showed higher soil macroaggregate stability under the NT

system than under the CT system due to the greater SOC found in NT. Although

only slightly greater proportion of microaggregates occluded within

macroaggregates (mM) were observed in NT compared with CT at all three sites,

higher microaggregate-associated C (total-mM-C) was measured under NT than

under CT. This finding was explained by the higher concentrations of intra-

microaggregate particulate organic matter (intra-mM-POM-C) in NT compared to

CT particularly at the soil surface. Therefore, in semiarid agroecosystems of the

Ebro valley, NT reduces soil macroaggregate turnover, thus allowing longer time

for microaggregates to be formed within the macroaggregates and, therefore,

greater SOC stabilization within microaggregates in the form of intra-mM-POM-

C.

Page 85: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

66Capítulo 4

1. Introduction

Soil organic carbon (SOC) sequestration has been defined as any persistent net

increase in soil organic C storage (Paustian et al., 1997). In agricultural soils, increases

in SOC can lead to an improvement on soil productivity (Bauer and Black, 1994) due to

a greater soil fertility and to a removal of CO2 from the atmosphere (Paustian et al.,

1998). Thus, the impact of agricultural management practices on C sequestration has

been widely revised (Paustian et al., 2000; Follet, 2001; Lal, 2001; Smith, 2004) and

research focused toward a better comprehension of the mechanisms involved in soil

organic matter (SOM) stabilization in soils (Six et al., 2002; Krull et al. 2003). Mainly,

these mechanisms are grouped in chemical (clay and silt associations with organic

compounds), biochemical (chemical structure of the organic matter) and physical

stabilization (protection of SOM within soil aggregates).

Soil aggregates take part in an important number of soil processes and properties

such as water and nutrient availability for plant growth, crop residue decomposition

dynamics and soil erosion susceptibility (Bronick and Lal, 2005). The relationship

between aggregation and SOM has been extensively studied (Tisdall and Oades, 1982;

Oades, 1984; Elliot, 1986; Oades and Waters, 1991; Six et al., 1998, 1999; Gale et al.,

2000; De Gryze et al., 2005). Tisdall and Oades (1982) presented a conceptual model of

aggregate hierarchy in which stable microaggregates were bound together forming

macroaggregates. They concluded that, conversely to macroaggregates, soil

management did not affect microaggregates. Later, Oades (1984) modified this model

and found that microaggregates were formed within the macroaggregates. In the last

decade, Six et al. (1998), studying different aggregate and SOM dynamics between no-

tillage (NT) and conventional tillage (CT), observed greater microaggregate-size intra-

particulate organic matter (fine iPOM) within macroaggregates of NT compared with

CT. One year later, the same authors developed a new conceptual model of aggregate C

dynamics in which soil disturbance (i.e. tillage) increases macroaggregate turnover

leading to a slower rate of microaggregate formation within macroaggregates and less

stabilization of SOM in newly formed microaggregates (Six et al., 1999). On the basis

of this model, Six et al. (2000) isolated microaggregates occluded within

macroaggregates from NT and CT plots and observed almost two-fold more

microaggregates within macroaggregates under NT than under CT. They concluded that

the greater amount of microaggregates formed in NT macroaggregates leads to the

stabilization and sequestration of C in the long-term. Recently, Denef et al. (2004),

Page 86: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

67Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

studying soil C sequestration in microaggregates of NT and CT plots from soils with

different mineralogy, also measured greater microaggregates within macroaggregates

and greater microaggregate-protected C in NT compared to CT. Likewise, these same

authors observed that the C fraction that mostly contributes to the long-term C

sequestration was the C associated with the mineral fraction of the microaggregates.

Semiarid agroecosystems of the Ebro river valley, northeast Spain, are characterized

by low crop yields due to highly variable and erratic rainfall (López et al., 1996,

Cantero-Martínez et al., 2003). Austin et al. (1998) suggested that the central part of the

Ebro valley is especially arid and marginal for crop production. In this area, where

traditional management practice has included an intensive soil tillage with mouldboard

ploughing, several studies comparing traditional tillage systems with conservation

tillage systems (i.e. reduced tillage, no-tillage) have reported improvements in yield, N

an water use efficiency and soil protection against wind erosion under conservation

tillage management (López et al., 1996; 2005; Angás et al., 2006). However, in semiarid

Ebro valley there are no studies available on the effect of tillage practices on SOC

dynamics. In semiarid central Spain, López-Fandos and Almendros (1995) and Hernanz

et al. (2002) observed greater surface accumulation of SOC under NT compared with

CT. Moreno et al. (2006), in semiarid southern Spain, observed greater SOC content in

the soil surface under conservation tillage compared with traditional tillage. However,

none of these studies studied the dynamics of SOC and the interrelationships between

soil aggregation and SOC fractions. The objectives of this work were to (i) study the

impact of NT vs. CT on the accumulation of SOC and its relation with

macroaggregation dynamics, (ii) determine the influence of the microaggregates located

within macroaggregates on SOC stabilization under Mediterranean conditions, and (iii)

identify the SOM fractions related with microaggregates most sensitive to tillage for the

study area conditions.

2. Materials and methods

2.1. Sites, tillage and cropping systems

This experiment was conducted at three different long-term tillage experiments

located across the Ebro valley. These sites from higher to lower annual precipitation

were: Selvanera, SV (latitude 41º 50’N; longitude 1º 17’E; altitude 475 m), Agramunt,

AG (latitude 41º 48’N; longitude 1º 07’E; altitude 330 m) and Peñaflor, PN (latitude 41º

44’N; longitude 0º 46’W; altitude 270). Site and soil characteristics, cropping systems

Page 87: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

68Capítulo 4

and tillage treatments are presented in Table 4.1. Experimental design consisted of a

randomized complete block design with three field replicates at SV and PN and with

four replicates at AG. The size of each plot was 7x50 m at SV, 9x50 m at AG and

10x33 m at PN.

2.2. Soil sampling and analyses

2.2.1. Soil aggregate separation

Soil samples were taken in July 2004, after crop harvest at three depths (0-5, 5-10

and 10-20 cm). A flat spade was used to collect soil samples and place them in crush-

resistant, air-tight containers in order to avoid aggregate breaking during sample

transportation. Four samples were taken per each plot and depth and then composite in

order to obtain one sample per depth and plot. Once in the laboratory, the field-moist

soil was passed through a 8-mm sieve. The sieved soil was air dried and stored at room

temperature.

Soil subsamples of 100 g were aggregate-size separated by a wet sieved method

adapted from Elliot (1986). Before sieving, a slaking pretreatment was applied to the

soil. This pretreatment consisted of air drying followed by rapid immersion in water.

During slaking, a high level of disruption occurs because of the rapid build up of air

pressure as capillarity pulls water into the aggregate (Kemper and Rosenau, 1986).

Briefly, on the top of a 2000-µm sieve, soil samples were submerged for 5 min in

deionized water at room temperature. The sieving was manually done moving the sieve

up and down 3 cm, 50 times in 2 min in order to achieve aggregate separation.

Afterwards, the stable aggregates (>2000-µm) were washed off the sieve into an

aluminium pan. Soil plus water that passed through the sieve was poured onto the next

finer sieve (250-µm and 53-µm) and the same process was repeated. The smallest

fraction (<53-µm, silt and clay) was centrifuged 10 min at 2500 rpm and collected into

an aluminium pan. Aluminium pans with the aggregate fractions retained were oven

dried (50 ºC) for 24 h. Once dried, aggregate fractions were weighed and stored in glass

jars at room temperature. Finally, four aggregate size fractions were obtained: i) >2000-

µm (large macroaggregates), ii) 250- to 2000-µm (small macroaggregates), iii) 53- to

250-µm (microaggregates), and iv) <53-µm (silt- plus clay-size particles).

Page 88: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

69Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

Table 4.1. Site and soil characteristics, cropping systems and tillage treatments.

Experimental sites Climate and soil characteristics

Selvanera (SV) Agramunt (AG) Peñaflor (PN)

Year of establishment 1987 1990 1990 Mean annual air temperature (ºC) 13.9 14.2 14.5 Mean annual precipitation (mm) 475 430 390 Cropping system Wheat-barley-

wheat-rapeseed Barley-wheat Continuous

barley

Tillage treatment CT, subsoiling (50 cm depth)

CT, mouldboard ploughing (40 cm depth)

CT, mouldboard ploughing

(40 cm depth) NT, no-tillage NT, no-tillage NT, no-tillage

Soil classification ¶ Xerocrept fluventic

Xerofluvent typic

Xerollic Calciorthid

Soil characteristics (Ap horizon) Depth (cm) 37 28 30 pH (H2O, 1:2.5) 8.3 8.5 8.2 EC1:5 (dS m-1) 0.16 0.15 0.29

Water retention (g g-1)

-33 kPa 0.16 0.16 0.20 -1500 kPa 0.04 0.05 0.11

Particle size distribution (%)

Sand (2000-50 µm) 36.5 30.1 32.4 Silt (50-2 µm) 46.4 51.9 45.5 Clay (< 2 µm) 17.1 17.9 22.2 ¶ USDA classification (Soil Survey Staff, 1975).

2.2.2. Microaggregate isolation

Microaggregates contained within macroaggregates were mechanically isolated

according to the methodology described by Six et al. (2000) and Denef et al. (2004). For

the SV soil, microaggregates were isolated from large (>2000 µm) and small (250- to

2000-µm) macroaggregates from both NT and CT treatments and from all the soil

depths (0-5, 5-10 and 10-20 cm). However, in the CT treatment of the AG and PN sites,

microaggregates were only isolated from small macroaggregates because not enough

stable large macroaggregates were present.

The device used for microaggregate isolation (Fig. 4.1) was the same built by Six et

al. (2000). This apparatus completely breaks up the macroaggregates while minimizing

the break down of the released microaggregates. Briefly, a 10-g macroaggregate

subsample was immersed in deionized water on top of a 250-µm mesh screen inside a

cylinder. Macroaggregates were shaken together with 50 glass beads (4-mm diameter)

Page 89: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

70Capítulo 4

until complete macroaggregate disruption was observed. Once the macroaggregates

were broken up, microaggregates and other <250-µm material passed through the mesh

screen with the help of a continuous water flow until a 53-µm sieve. The material

retained on the 53-µm sieve was wet sieved by a method adapted from Elliot (1986).

Sieving the <250-µm material ensured us that the isolated microaggregates were water-

stable aggregates (Six et al., 2000).

Fig. 4.1. Microaggregate isolator.

2.2.3. Intra- and intermicroaggregate particulate organic matter separation

Density fractionation according to Six et al. (1998) was used to separate inter-

microaggregate POM (inter-mM-POM) from the microaggregates. This inter-mM-POM

is the fine POM (53-250 µm) not occluded inside the microaggregates. The physical

separation was made by density flotation with sodium polytungstate (Six et al., 1998).

Briefly, the aggregate sample was weighed and suspended in 35 mL of 1.85 g cm-3 of

sodium polytungstate in a 50-mL graduated conical centrifuge tube. The centrifuge

tubes with the suspended samples were placed inside a vacuum chamber for 10 min

(138 kPa). Vacuum allows aggregates to evacuate air entrapped within them. Then,

tubes were centrifuged (2500 rpm) at 20 ºC for 60 min. The floating material (inter-

mM-POM) was separated from the heavy fraction (i.e., microaggregates plus sand) by

aspiration and filtering using a 20-µm nylon filter and oven dried at 50 ºC. The fine

Page 90: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

71Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

POM occluded inside the microaggregates (intra-mM-POM) was isolated from the

heavy fraction by dispersion in 5 g of Na-hexametaphosphate per litre and shaking on a

reciprocal shaker for 18 h. After shaking, the dispersed fraction was transferred onto a

53-µm sieve to isolate intra-mM-POM and sand. This sand was 53-250 µm size and

thus not considered part of the microaggregates (Denef et al., 2004).

The proportion of microaggregates within macroaggregates was corrected for sand

content (Six et al., 2000) and calculated as:

Proportion of microaggregates within macroaggregates (%) = [1]

(microaggregate weight – weight of 53-250 µm sand) × 100 (macroaggregate weight – weight of macroaggregate-sized sand)

2.2.4. Carbon analyses

Total SOC content was measured using the wet oxidation method of Walkley and

Black (Nelson and Sommers, 1982). The total microaggregate-associated C (total mM-

C) and the inter- and intra-mM-POM C fractions were measured on a CN analyzer

(model Carlo Erba NA 1500, Carlo Erba, Milan, Italy) because of the small size of these

C fractions.

The total mM-C is the sum of the inter-mM-POM, the intra-mM-POM and the C

associated with the mineral fraction of the microaggregates (mineral-mM-C). This

mineral-mM-C was calculated by difference as:

Mineral-mM-C = total mM-C – (inter-mM-POM + intra-mM-POM) [2]

Microaggregate-C concentrations were expressed on a sand-corrected

macroaggregate basis (Denef et al., 2004). Due to textural differences among sites and

the fact that sand particles do not specially contribute to the dynamics of soil organic

matter (Elliot et al., 1991), C concentration was corrected for the sand content of the

macroaggregates. The sand content of the macroaggregates consisted of the coarse sand

particles (250- to 2000-µm) retained on the 250-µm mesh of the microaggregate isolator

and the fine sand fraction (53- to 250-µm) retained on the 53-µm sieve. Although both

sand fractions consisted of sand particles plus POM, no attempt was made to subtract

the weight of the POM due to the low value of this fraction compared with the weight of

the sand (Denef et al., 2004).

Page 91: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

72Capítulo 4

Data were analyzed using the SAS statistical package (SAS Institute, 1990). To

compare the effects of tillage and site analysis of variance (ANOVA) for a randomized

block design was used and differences between means were tested with Duncan’s

multiple range test.

3. Results and discussion

3.1. Total soil organic carbon (SOC)

Differences on total SOC between tillage treatments were observed in the upper 5

cm of soil at all the sites. SOC was significantly greater under NT than under CT (Table

4.2), in agreement with many other studies (Lyon et al. 1997; Peterson et al., 1998;

Halvorson et al., 2002; Hernanz et al., 2002). Tillage reduces aggregate size, exposing

protected aggregate C to microbial attack and stimulating oxidation of soil C (Peterson

et al., 1998). However, when deeper soil layers were considered, the differences

between tillage treatments decreased and, even, a greater SOC concentration was

observed in CT compared with NT as it occurred in the 5-10 cm and 10-20 cm soil

layers at the SV site and in the 10-20 cm layer at the AG and PN sites (Table 4.2).

Mrabet et al. (2001), in semiarid Morocco, observed a significantly greater SOC content

in NT compared with CT in the soil surface (0-7 cm depth) but similar SOC values for

both treatments at a deeper soil layer (7-20 cm). Deen and Kataki (2003) found a lower

SOC content in NT compared with CT for the 10- to 20-cm depth.

Differences in SOC concentration among sites would be related to differences in the

cropping system, annual precipitation and soil characteristics.

Table 4.2. Total soil organic carbon (SOC) concentration (%) in no-tillage (NT) and

conventional tillage (CT) at the three experimental sites (SV, Selvanera; AG, Agramunt; PN,

Peñaflor). Site and tillage treatment

SV AG PN

Soil

depth

(cm) NT CT NT CT NT CT

0-5 1.87 *** 1.26 1.42 ** 0.91 1.27 ** 0.92

5-10 0.81 * 1.00 1.02 * 0.88 0.98 ns 0.92

10-20 0.64 ** 0.80 0.87 ns 0.91 0.83 ns 0.90 *** P ≤ 0.001; ** P ≤ 0.01; * P ≤ 0.1; ns: not significant.

Page 92: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

73Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

0.0

0.1

0.2

0.3

0.4

0.5

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

SV

CTNT

AA

AB *

AB A

AA

A *

*A

g m

acro

aggr

egat

e g-1

dry

soi

l

0.0

0.1

0.2

0.3

0.4

0.5

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

AG

ND ND ND C CB

A*

B

A

AA

*B

g m

acro

aggr

egat

e g-1

dry

soi

l

0.0

0.1

0.2

0.3

0.4

0.5

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

PN

ND ND ND

AB B B

B B BBAA

g m

acro

aggr

egat

e g-1

dry

soi

l

Macroaggregate size class (µm) and soil depth (cm)

Fig. 4.2. Distribution with depth of the coarse (>2000 µm) and small (250-2000 µm) soil

macroaggregates under conventional tillage (CT) and no-tillage (NT) at Selvanera (SV),

Agramunt (AG) and Peñaflor (PN). Within a tillage treatment and soil depth, different upper

case letters indicate values significantly different among sites (P<0.05). Values followed by a *

Page 93: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

74Capítulo 4

within a site and soil depth are significantly different between tillage treatments (P<0.05). ND:

Not determined.

3.2. Macroaggregate content

Coarse macroaggregate (>2000 µm) content ranged from 0 to 0.37 g g-1 dry soil.

However, when small macroaggregates (250-2000 µm) were considered this range

dropped to 0.04–0.21 g g-1 dry soil (Fig. 4.2). Whereas the proportion of coarse

macroaggregate was reduced with depth, no clear trend was observed for the small

macroaggregates.

At SV, the content of coarse macroaggregates (>2000 µm) was greater in NT plots

than in CT plots for all soil depths (Fig. 4.2). However, for the small macroaggregate

fraction (250-2000 µm), differences between tillage treatments were small and

negligible. In the other two sites, AG and PN, the content of small macroaggregate

(250-2000 µm) was greater under NT than under CT in the three soils depths analysed.

The differences between the two tillage treatments were greater in AG than in PN

(Fig. 4.2). Tillage caused a decrease in macroaggregate stability compared with NT.

Angers et al. (1993) and Franzluebbers and Arshad (1996), studying tillage effects on

aggregation in Canada, found greater macroaggregate stability under NT compared with

CT. Hernanz et al. (2002), concluded that differences on soil macroaggregate content

are related with differences on SOC. In our study, we found that stable macroaggregate

content was directly related to total SOC (Fig. 4.3). Soil organic matter within soil

aggregates increases the binding of primary-sized particles and decreases aggregate

wettability resulting in greater stability (Chenu et al., 2000).

3.3. Microaggregates within macroaggregates

The mass of soil microaggregates contained within macroaggregates was slightly

greater under NT than under CT at all the sites and soils depths except at the PN site at

the 5-10 cm soil layer (Fig. 4.4). However, the difference between tillage treatments

was only significant at the soil surface layer (0-5 cm) of the AG site (Fig. 4.4). Six et al.

(2000), under dryland semiarid conditions, found a twofold greater proportion of

microaggregates in NT than in CT. They concluded that a faster macroaggregate

turnover in CT led to a lower microaggregate formation within macroaggregates

compared with NT.

The ratio of the proportion of soil microaggregate within macroaggregates between

NT and CT varied among sites in the following order: AG > SV > PN (Table 4.3). In

Page 94: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

75Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

the deepest soil layer sampled (10-20 cm) this order was completely inverted,

corresponding to the PN site the greatest difference between tillage treatments.

Sta

ble

mac

roag

greg

ate

cont

ent (

g g-1

dry

soi

l)

0

0.05

0.1

0.15

0.2

0.25

0 0.5 1 1.5 2

Stable macroaggregates (g g-1 dry soil) = 0.135 SOC (%) - 0.034

R2 = 0.620

SOC (%)

Fig. 4.3. Relationship between stable small macroaggregate (250-2000 µm) content and total

soil organic carbon (SOC).

Table 4.3. Ratio of proportion of soil microaggregates within macroaggregates in no-tillage

(NT) to proportion in conventional tillage (CT) for the three experimental sites (Selvanera, SV;

Agramunt, AG; Peñaflor, PN).

Soil depth NT/CT

(cm) SV AG PN

0-5 1.22 1.38 1.10

5-10 1.07 1.11 0.89

10-20 1.17 1.13 1.20

The proportion of microaggregates located within small macroaggregates (250- to

2000-µm) ranged from 15 to 28 % (Fig. 4.4). Therefore, less than one third part of the

mass of the small macroaggregates consisted of microaggregates. When the large

macroaggregates (>2000 µm) fraction was considered, the proportion of

microaggregates ranged from 12 to 23%. Thus, a slightly greater proportion of

microaggregates were found in the small macroaggregates than in the large

macroaggregates. It is important to point out that in the CT plots of the AG and PN

Page 95: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

76Capítulo 4

sites, it was not found enough stable large macroaggregates to continue with the

microaggregate isolation (Fig. 4.4).

S

and

corr

ecte

d m

icro

aggr

egat

es

with

in m

acro

aggr

egat

es

(g 1

00 g

-1 m

acro

aggr

egat

es)

0

5

10

15

20

25

30

35

40

45

50

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

B

CTNT

AAB

AA

A

SV

AA

San

d co

rrec

ted

mic

roag

greg

ates

w

ithin

mac

roag

greg

ates

(g

100

g-1

mac

roag

greg

ates

)

0

5

10

15

20

25

30

35

40

45

50

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

A

AA

A*

ND ND ND

AAA

AA

AG

San

d co

rrec

ted

mic

roag

greg

ates

w

ithin

mac

roag

greg

ates

(g

100

g-1

mac

roag

greg

ates

)

0

5

10

15

20

25

30

35

40

45

50

>2000 250-2000 >2000 250-2000 >2000 250-2000

0-5 5-10 10-20

B

ND ND ND

AA

AA

BAB

AA

PN

Macroaggregate size class (µm) and soil depth (cm)

Fig. 4.4. Distribution with depth of the percentage of soil microaggregates (250-2000 µm)

contained within coarse (>2000 µm) and small (250-2000 µm) macroaggregates under

conventional tillage (CT) and no-tillage (NT) at Selvanera (SV), Agramunt (AG) and Peñaflor

Page 96: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

77Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

(PN). Within a tillage treatment and soil depth, different upper case letters indicate values

significantly different among sites (P<0.05). Values followed by a * within a site and soil depth

are significantly different between tillage treatments (P<0.05). ND: Not determined.

Differences in the proportion of microaggregates among experimental sites within

each tillage treatment and depth were small. In the small macroaggregate fraction from

the 5-10 cm soil layer in both NT and CT treatments, it was observed a significantly

greater mass of microaggregates within macroaggregates in AG compared to SV (Fig.

4.4).

3.4. Microaggregate-associated C fractions

The total C concentrations of microaggregate-associated fractions isolated from

small macroaggregates (250-2000 µm) are shown in Fig. 4.5. Due to the small mass of

coarse macroaggregates (>2000 µm) at AG and PN, it was only possible to carry out the

fractionation procedure in the small macroaggregates. The total C of the

microaggregates (total mM-C) was the sum of three C fractions: the C associated with

particulate organic matter protected inside the microaggregate (intra-mM-POM-C), the

C associated with particulate organic matter located outside the microaggregate (inter-

mM-POM-C) and the C associated with the mineral fraction of microaggregates

(mineral-mM-C). Due to the low and negligible amount of inter-mM-POM-C (Fig. 4.5),

total mM-C was considered as the sum of intra-mM-POM-C and mineral-mM-C. Total

mM-C ranged from 5.8 to 17.5 g C kg-1 macroaggregates with the greatest values found

at SV in NT at the soil surface (0-5 cm depth) and the lowest at the PN site in CT at this

same depth. For the whole soil profile, PN had the lowest total mM-C due to a lower

intra-mM-POM-C compared with the other sites. Nevertheless, the mineral-mM-C

fraction in PN was similar or even greater than in the AG and SV sites in which the

intra-mM-POM-C concentration was similar (Fig. 4.5). Kong et al. (2005), studying the

effect of C input on C stabilization, observed that greater C inputs led to greater C

sequestration located in the microaggregates within the small macroaggregates. In our

study, since the beginning of the experiment, crop residue production among sites has

followed the order: SV > AG > PN. In SV, the average amount of surface crop residues

from 1999 to 2004 was 8165 kg ha-1 whereas in PN this value dropped down to 1646 kg

ha-1.

In the three sites studied, the intra-mM-POM-C was significantly greater under NT

than under CT for the 0-5 cm depth. However, although no significant differences were

Page 97: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

78Capítulo 4

found when a deeper soil layer was considered, at AG for the 5-10 cm soil depth a

greater intra-mM-POM-C was also found in NT compared with CT (Fig. 4.5).

For the mineral-mM-C fraction, an opposite trend was observed at the surface layer

(0-5 cm) in the SV and PN sites, with greater values in CT compared with NT. At AG

no differences in the mineral-mM-C fraction were found between tillage treatments in

the 0- to 5-cm layer. When deeper soil was considered no differences were found

between tillage treatments (Fig. 4.5).

Denef et al. (2004), comparing different microaggregate-associated fractions

between tillage treatments in soils with different mineralogy, observed greater intra-

mM-POM-C and mineral-mM-C fractions in NT compared with CT in a temperate soil

dominated by 2:1 clay mineralogy. In a different study carried on the same site, Six et

al. (2000) also found greater intra-mM-POM-C within the microaggregates of NT

compared with CT. These authors have previously observed differences in fine iPOM C

concentration between tillage treatments (Six et al., 1998, 1999). They defined this fine

iPOM as the particulate organic matter with a 53-250 µm size found within

macroaggregates resulting from the decomposition and fragmentation of coarse iPOM

(>250 µm). This fraction forms the core of a new microaggregate, within the

macroaggregate, being physically protected from decomposition (Paustian et al., 2000).

Therefore, the faster turnover of macroaggregates under CT compared with NT reduces

the formation of microaggregates within macroaggregates and, thus, the stabilization of

soil C within microaggregates (Six et al., 1998, 1999, 2000). Consequently, the

protection and stabilization of intra-mM-POM within microaggregates is a mechanism

for long-term C sequestration under NT systems. The results obtained in the present

study suggest that the greater intra-mM-POM-C found under NT compared with CT

(Fig. 4.5) was a consequence of different turnover rates in NT and CT as previously

indicated (Six et al., 2000).

In the study by Denef et al. (2004), the major portion (i.e. more than 75%) of the

microaggregate-associated C was in the form of mineral-mM-C (i.e. more than 75%).

Jastrow (1996) also observed that the major part of the C accumulated within

macroaggregates was in the form of mineral-associated C. In contrast, in our study, the

greatest proportion of microaggregate-associated C was in the form of intra-mM-POM-

C, with maximum values reaching 90% of the total microaggregate-associated C. We

hypothesized that this opposite trend may be related with differences in soil properties

Page 98: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

79Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

or cropping characteristics among studies. Soil texture is a major factor controlling

mineral-associated C.

SV

a

0

4

8

12

16

20

NT CT NT CT NT CT

0-5 5-10 10-20

SV *

a A A A AB A A a

a a

a

a a b

b

a

a

C c

once

ntra

tion

in s

and

free

mac

roag

greg

ates

(250

-200

0 µm

) (g

C k

g-1 m

acro

aggr

egat

es)

PN

Inter-mM-POM-C Intra-mM-POM-C Mineral-mM-C

0

4

8

12

16

20

NT CT NT CT NT CT

0-5 5-10 10-20

0

4

8

12

16

20

NT CT NT CT NT CT

0-5 5-10 10-20

C c

once

ntra

tion

in s

and

free

mac

roag

greg

ates

(250

-200

0 µm

) (g

C k

g-1 m

acro

aggr

egat

es)

PN

B C

a

a B a a

a

a

a

B B B

*

b

b a

a

a

a a a a a a

a

AG

C c

once

ntra

tion

in s

and

free

mac

roag

greg

ates

(250

-200

0 µm

) (g

C k

g-1 m

acro

aggr

egat

es)

A AB

*

a A a A a B A a b

Tillage treatments and soil depth (cm)

Fig. 4.5. Distribution with depth of the total microaggregate-associated C fractions isolated

from small macroaggregates (250-2000 µm) under conventional tillage (CT) and no-tillage (NT)

at Selvanera (SV), Agramunt (AG) and Peñaflor (PN). Within a tillage treatment and soil depth,

different upper case letters indicate values of total microaggregate C significantly different

among sites (P<0.05). Within a site and soil depth, different lower case letters indicate values of

Page 99: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

80Capítulo 4

C fractions significantly different between tillage treatments (P<0.05). Values followed by a *

within a site and soil depth, indicate that total microaggregate C is significantly different

between tillage treatments (P<0.05).

Thus, the higher the silt plus clay content of the soil, the higher the mineral-associated C

(Hassink, 1997). In our study, we assumed that differences in soil texture induced

differences in the proportion of mineral-mM-C vs intra-mM-POM-C fractions among

sites. The lowest mineral-mM-C content was found at SV where soil had the lowest silt

plus clay content. Another factor that may explain the low mineral-mM-C observed in

our experiment would be the differences in the time elapsed since the beginning of the

long-term experimental plots. The Sidney plots of Denef et al. (2004) were established

in 1969 whereas our oldest site (SV) was established in 1987. A greater time since the

start of the experiment could have led to a greater content of mineral-mM-C as it was

observed by Jastrow (1996) who found greater mineral-associated C in a restored prairie

of 10 growing seasons compared with a restored prairie of 4 growing seasons.

4. Summary and conclusions

In semiarid agroecosystems of the Ebro valley, the use of intensive traditional tillage

practices during decades has resulted in a depletion of the SOC levels. Results from this

study have demonstrated that no-tillage is a viable practice to increase SOC in

agricultural soils of this area. No-tillage reduces soil macroaggregate turnover, thus

allowing longer time for microaggregates to be formed within the macroaggregates and,

therefore, a greater SOC stabilization within these microaggregates.

Results also indicate that the greater residue inputs into the soil, the greater the

macroaggregate formation and SOC stabilization in microaggregates. In SV, with the

highest annual rainfall and the highest crop residue production it was observed the

greatest amount of SOC within the microaggregates.

In conclusion, in semiarid agroecosystems of the Ebro valley the shift from intensive

tillage practices to more conservative practices, as no-tillage, is a reasonable approach

to increase soil C sequestration in microaggregates within macroaggregates. This SOC

occluded in microaggregates is protected from microbial attack, promoting long-term C

stabilization.

References

Page 100: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

81Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

Angás, P., Lampurlanés, J., Cantero-Martínez, C. 2006. Tillage and N fertilization

effects on N dynamics and barley yield under semiarid Mediterranean conditions.

Soil Till. Res. 87, 59-71.

Angers, D.A., Samson, N., Légère, A. 1993. Early changes in water-stable aggregation

induced by rotation in a soil under barley production. Can. J. Soil Sci. 73, 51-59.

Austin, R.B., Cantero-Martínez, C., Arrúe, J.L., Playán, E., Cano-Marcellán, P. 1998.

Yield-rainfall relationships in cereal cropping systems in the Ebro river valley of

Spain. Euro. J. Agron. 8, 239-248.

Bauer, A., Black, A.L. 1994. Quantification of the effect of soil organic matter content

on soil productivity. Soil Sci. Soc. Am. J. 58, 185-193.

Bronick C.J., Lal R. 2005. Soil structure and management: a review. Geoderma 124, 3-

22.

Cantero-Martínez, C., Angas, P., Lampurlanés, J. 2003. Growth, yield and water

productivity of barley (Hordeum vulgare L.) affected by tillage and N fertilization

in Mediterranean semiarid, rainfed conditions of Spain. Field Crops Res. 84, 341-

357.

Chenu, C., Le Bissonnais, Y., Arrouays, D. 2000. Organic matter influence on clay

wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64, 1479-1486.

De Gryze, S., Six J., Brits, C., Merckx, R. 2005. A quantification of short-term

macroaggregate dynamics: influences of wheat residue input and texture. Soil

Biol. Biochem. 37, 55-66.

Deen W., Kataki, P.K. 2003. Carbon sequestration in a long-term conventional versus

conservation tillage experiment. Soil Till. Res. 74, 143-150.

Denef, K., Six, J., Merckx, R., Paustian, K. 2004. Carbon sequestration in

microaggregates of no-tillage soils with different clay mineralogy. Soil Sci. Soc.

Am. J. 68, 1935-1944.

Elliot, E.T. 1986. Aggregate structure and carbon, nitrogen and phosphorous in native

and cultivated soils. Soil Sci. Soc. Am. J. 50, 627-633.

Elliot, E.T., Palm, C.A., Reuss, D.E., Monz, C.A. 1991. Organic matter contained in

soil aggregates from a tropical chronosequence: correction for sand and light

fraction. Agric. Ecosyst. Environ. 34, 443-451.

Follet, R.F. 2001. Soil management concepts and carbon sequestration in cropland soils.

Soil Till. Res. 61, 77-92.

Page 101: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

82Capítulo 4

Franzluebbers, A.J., Arshad, M.A. 1996. Water-stable aggregation and organic matter in

four soils under conventional and zero tillage. Can. J. Soil Sci. 76, 387-393.

Gale, W.J., Cambardella, C.A., Bailey, T.B. 2000. Root-derived carbon and the

formation and stabilization of aggregates. Soil Sci. Soc. Am. J. 64, 201-207.

Halvorson, A.D., Peterson G.A., Reule, C.A. 2002. Tillage system and crop rotation

effects on dryland crop yields and soil carbon in the Central Great Plains. Agron.

J. 94, 1429-1436.

Hassink, J. 1997. The capacity of soils to preserve organic C and N by their association

with clay and silt particles. Plant Soil 191, 77-87.

Hernanz, J.L., López, R., Navarrete, L., Sánchez-Girón, V. 2002. Long-term effects of

tillage systems and rotations on soil structural stability and organic carbon

stratification in semiarid central Spain. Soil Till. Res. 66, 129-141.

Jastrow, J.D. 1996. Soil aggregate formation and the accrual of particulate and mineral-

associated organic matter. Soil Biol. Biochem. 28, 656-676.

Kemper, W.D., Rosenau, R.C. 1986. Aggregate stability and size distribution. P. 425-

442. In: A. Klute (ed.) Methods of Soil Analysis. Part 1. Physical and

mineralogical methods. ASA Book series No. 9 Agronomy. Madison, WI, USA.

Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F., Van Kessel, C. 2005. The

relationship between carbon input, aggregation, and soil organic carbon

stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078-1085.

Krull, E.S., Baldock, J.A., Skjemstad, J.O. 2003. Importance of mechanisms and

processes of the stabilisation of soil organic matter for modelling carbon turnover.

Funct. Plant Biol. 30, 207-222.

Lal, R. 2001. World cropland soils as a source or sink for atmospheric carbon. Adv.

Agron. 71, 145-191.

López-Fando, C., Almendros, G. 1995. Interactive effects of tillage and crop rotations

on yield and chemical properties of soils in semi-arid central Spain. Soil Till. Res.

36, 45-57.

López, M.V., Arrúe, J.L., Álvaro-Fuentes, J., Moret D. 2005. Dynamics of surface

barley residues during fallow as affected by tillage and decomposition in semiarid

Aragón (NE Spain). Eur. J. Agron. 23, 26-36.

López, M.V., Arrúe, J.L., Sánchez-Girón, V. 1996. A comparison between seasonal

changes in soil water storage and penetration resistance under conventional and

conservation tillage systems in Aragón. Soil Till. Res. 37, 251-271.

Page 102: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

83Tillage Effects on C Stabilization in Soil Microaggregates under Semiarid Mediterranean Conditions

Lyon, D.J., Monz, C.A., Brown, R.E., Metherell A.K. 1997. Soil organic matter changes

over two decades of winter wheat-fallow cropping in western Nebraska. P. 343-

351. In: E.A. Paul et al. (ed.). Soil Organic Matter in Temperate Agroecosystems:

Long-term Experiments in North America, CRC Press, Boca Raton, FL, USA.

Moreno, F., Murillo, J.M., Pelegrín, F., Girón, I.F. 2006. Long-term impact of

conservation tillage on stratification ratio of soil organic carbon and loss of total

and active CaCO3. Soil Till. Res. 85, 86-93.

Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F. 2001. Total, particulate

organic matter and structural stability of a Calcixeroll soil under different wheat

rotations and tillage systems in a semiarid area of Morocco. Soil Till. Res. 57,

225-235.

Nelson, D.W., Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. P.

539-579. In: A.L. Page et al. (ed.), Methods of Soil Analysis, Part 2, 2nd Edition

Agronomy, Vol. 9. Soil Science Society of America, Madison, WI, USA.

Oades, J.M. 1984. Soil organic matter and structural stability: mechanisms and

implications for management. Plant Soil 76, 319-337.

Oades, J.M., Waters, A.G. 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29,

815-828.

Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van

Noordwijk, M., Woomer, P.L. 1997. Agricultural soils as a sink to mitigate CO2

emissions. Soil Use Manage. 13, 230-244.

Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N. 1998. CO2 mitigation by

agriculture: an overview. Climatic Change 40, 135-162.

Paustian, K., Six, J., Elliot, E.T., Hunt, H.W. 2000. Management options for reducing

CO2 emissions from agricultural soils. Biogeochemistry 48, 147-163.

Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones O.R., Lyon, D.J., Tanaka, D.L.,

1998. Reduced tillage and increasing cropping intensity in the Great Plains

conserves soil C. Soil Till. Res. 47, 207-218.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC,

USA.

Six, J., Conant, R.T., Paul, E.A., Paustian, K. 2002. Stabilization mechanisms of soil

organic matter: Implications for C-saturation of soils. Plant Soil 241, 155-176.

Six, J., Elliot, E.T., Paustian, K. 1999. Aggregate and soil organic matter dynamics

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358.

Page 103: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

84Capítulo 4

Six, J., Elliot, E.T., Paustian, K. 2000. Soil macroaggregate turnover and

microaggregate formation: a mechanism for C sequestration under no-tillage

agriculture. Soil Biol. Biochem. 32, 2099-2103.

Six, J., Elliot, E.T., Paustian, K., Doran, J.W. 1998. Aggregation and soil organic matter

accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62,

1367-1377.

Smith, P. 2004. Soil as carbon sinks: the global context. Soil Use Manag. 20, 212-218.

Soil Survey Staff. 1975. Soil taxonomy, a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook 436. US Gov. Print.

Office, Washington, DC, USA.

Tisdall, J.M., Oades, J.M. 1982. Organic matter and water-stable aggregates in soils. J.

Soil Sci. 33, 141-163.

Page 104: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 5

Tillage and Cropping Intensification Effects on Soil

Aggregation: Temporal Dynamics and Controlling

Factors under Semiarid Conditions

Page 105: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

87

Tillage and Cropping Intensification Effects on Soil Aggregation:

Temporal Dynamics and Controlling Factors under Semiarid

Conditions

ABSTRACT

During decades, in semiarid agroecosystems of the Ebro valley, intensive soil

tillage and low crop residue input has led to loss of soil structure. Conservation

tillage and cropping intensification can improve soil structure in these areas. The

objective of this study was to determine the influence of three different tillage

systems (conventional tillage, CT; reduced tillage, RT; and no-tillage, NT) under

two cropping systems (barley-fallow rotation, CF; and continuous barley, CC) on

soil aggregation dynamics during two consecutive growing seasons (2003-2004 and

2004-2005). At the same time, it was studied the role that different soil and climatic

factors play on soil aggregation in these semiarid areas. Soil samples were collected

at the soil surface (0-5 cm depth) from a long-term tillage experiment with a loamy

soil (Xerollic Calciorthid). Two aggregation indexes were studied: dry aggregate

size distribution and water aggregate stability from both air-dried and field-moist

macroaggregates. A decrease in tillage intensity resulted in a higher mean size of

dry aggregates and a greater water aggregate stability in both cropping systems

particularly under NT. During the whole experiment, the dry aggregate size

distribution (measured as the mean weight diameter, MWD) and the water

stability of field-moist and air-dried soil aggregates (WASAD and WASFM,

respectively) were greater under NT than under RT and CT due to a higher soil

organic matter content in NT. Intensification of cropping system resulted in a

greater water aggregate stability (both WASAD and WASFM) but it did not have

any effect in the MWD. Differences among tillage treatments were more

pronounced under the CC system than under the CF rotation due to the lower soil

organic matter content and microbial biomass when long-fallowing is used.

Variations in soil aggregation dynamics during the cropping season were mainly

affected by crop growth and the associated activity of soil microorganisms. These

findings indicate that the use of alternative management practices as NT and CC

are viable strategies to improve the aggregation status of soils from semiarid Ebro

valley.

Page 106: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

88Capítulo 5

1. Introduction

In agroecosystems, soil aggregation influences a large number of physical and

biogeochemical processes such as soil organic matter (SOM) protection, root density

and elongation, soil erosion, oxygen diffusion, soil water retention and dynamics,

nutrient adsorption and microbial community structure (Amézketa, 1999; Six et al.,

2004). In Mediterranean Ebro valley, where water is the most limiting factor affecting

crop production (Angás et al., 2006), there is a high potential risk of land degradation.

Consequently, in Mediterranean agroecosystems soil aggregation plays an important

role in the maintenance of soil quality and, thus, crop productivity.

Soil tillage and, particularly, mouldboard ploughing, accelerates SOM decomposition

(Bruce et al., 1999; Paustian et al., 2000) and decreases dry soil aggregation (Yang and

Wander, 1998; Mrabet et al., 2001) and aggregate stability to water immersion (Singh et

al., 1994; Hernanz et al., 2002). Tillage has a direct effect on soil structure through the

mechanical breakage of large clods and macroaggregates. At the same time, the surface

of tilled soils is more exposed to the action of climatic factors and, especially, to water

and wind erosion processes (Balesdent et al., 2000; López et al., 2000). Also, tillage has

an indirect effect on soil structure due to its influence on SOM. The relationship

between SOM and soil structure has been widely studied in the literature (Tisdall and

Oades, 1982; Puget et al., 1995; Six et al., 2002). Organic matter acts as a binding agent

for aggregate formation (Amézketa, 1999; Bronick and Lal, 2005). Tisdall and Oades

(1982) classified organic binging agents as a function of their persistence and relation

with soil aggregates in three groups: transient (e.g., polysaccharides), temporary (e.g.,

roots and hyphae) and persistent (e.g., aromatic humic material). Oades (1984)

suggested that soil macroaggregate stability to water immersion is related with organic

materials (e.g. roots, hyphae, worm casts …).

The type of cropping system also influences soil aggregation. Several authors,

studying the effect of different cropping systems on aggregation, have observed

significant positive relationship between aggregate stability and C inputs (Shaver et al.,

2002; Kong et al., 2005). The inclusion of fallowing in the rotation has an adverse

effect on soil aggregation due to the lack of C inputs. However, under Mediterranean

semiarid conditions, changes induced by cropping systems are expected to be low due

to the limited C inputs under these conditions (Masri and Ryan, 2006).

Temporal changes in soil aggregation during crop growth have been studied by

several authors. Perfect et al. (1990) studying the effect of different factors on water

Page 107: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

89Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

aggregate stability (WAS) during a cropping season, concluded that the gravimetric soil

water content at sampling was the soil factor that mostly influenced WAS. Similar

findings were reported by Angers (1992) and Chan et al. (1994). However, these

authors did not find any relationship between WAS during the season and total soil

organic carbon (SOC) (Chan et al., 1994) and microbial biomass (Perfect et al., 1990).

In studies on the temporal variation on soil aggregation, WAS analyses have been

made on air-dried aggregates (Yang and Wander, 1998), field-moist aggregates (Perfect

et al., 1990; Angers, 1992) and both air-dried and field-moist aggregates (Chan et al.,

1994). The study of the temporal variations on WAS with field-moist aggregates gives a

realistic approach of the influence of the aggregate water content on WAS. However,

air-dried aggregates for WAS analyses give an interesting indication of the

susceptibility of the aggregates to slaking (Haynes and Swift, 1990). In semiarid

Mediterranean conditions, where low soil water content together with erratic rainfall

events are two main characteristics, it is worth using air-dried and field-moist

aggregates for the study of temporal variations of WAS because air-dried aggregates

inform about the potential resistance of aggregates to rapid wetting due to an intensive

rainfall after a drought period.

In semiarid agroecosystems of the Ebro river valley, the cereal-fallow rotation

together with intensive soil tillage, including mouldboard ploughing, are widespread

agricultural management practices. The continuous use of these practices during

decades and highly variable and erratic rainfall conditions are factors that limit crop

yield in these agroecosystems (López et al., 1996; Lampurlanés et al., 2002; Moret et

al., 2006). Moreover, these practices and limited biomass production have led to low

SOM contents and weak soil structure thus negatively affecting soil quality. Therefore,

in these agroecosystems, it is necessary a shift from traditional agriculture towards a

more conservative agriculture with lower soil tillage intensity and with the suppression

of long fallowing.

Several studies have been carried out in semiarid Mediterranean agroecosystems to

study the effects of conservation tillage, especially no-tillage (NT), and cropping

systems intensification on soil aggregation (López et al., 2000; Mrabet et al., 2001,

Hernanz et al., 2002, Masri and Ryan, 2006). However, in these studies no attempts

were made to study the temporal changes of soil aggregation during the crop growth.

The objectives of this study were to (i) evaluate the effect of conservation tillage

systems (reduced tillage and no-tillage) and the intensification of cropping systems on

Page 108: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

90Capítulo 5

dry aggregate distribution and wet aggregate stability, (ii) study temporal changes on

soil surface aggregation during the growing season and (iii) to identify the main soil

properties contributing to soil aggregation.

2. Materials and methods

2.1. Site, tillage and cropping systems

The study was conducted from February 2004 to September 2005 at the dryland

research farm of the Estación Experimental de Aula Dei (Consejo Superior de

Investigaciones Científicas) in the Zaragoza province (41º44’30´´N, 0º46’18´´W, 270

m). Details on the experimental site and soil are given in Table 5.1 and precipitation and

maximum and minimum temperatures recorded at the experimental site for each year of

the study are presented in Table 5.2. In the study site, a long-term tillage and cropping

systems comparison experiment was established in 1989 with three tillage treatments:

conventional tillage (CT), reduced tillage (RT) and no-tillage (NT) under both the

traditional cereal-fallow rotation (CF) and the continuous cropping (CC) system with

barley. In both cropping systems, the CT treatment consisted of a pass of mouldboard

ploughing to a depth of 30-40 cm. The RT treatment was implemented by chisel

ploughing to a depth of 25-30 cm. In both CT and RT, primary tillage was followed by

a pass of a sweep cultivator (10-15 cm depth). In the NT treatment no tillage operations

were done and soil was kept free of weeds by spraying a total herbicide (glyphosate). In

both cropping systems, mouldboard ploughing in the CT plots was followed by a pass

with a tractor-mounted scrubber as a traditional practice to break down large clods. At

the CC system, tillage was implemented every November before barley sowing.

However, in the CF rotation, tillage was implemented in March, every two years, during

the season in which barley was not sown.

The experiment design was a randomized complete block design with three

replicates. Treatment plot size was 33.5 m x 10 m.

Page 109: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

91Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

Table 5.1. Site and soil properties at the experimental site (López et al., 1998).

Site and soil characteristics

Mean annual air temperature (ºC) 14.5

Mean annual precipitation (mm) 390

Soil classification ¶ Xerollic Calciorthid

Soil depth (cm) 0-20 20-40

Particle size distribution (g kg-1) Sand (2000 < Ø < 50 µm) 293 279 Silt (50 < Ø < 2 µm) 484 460 Clay (Ø < 2 µm) 223 261

pH (H2O, 1:2.5) 8.3 8.3

Electrical conductivity (1:5) (dS m-1) 0.25 0.28

CaCO3 (g kg-1) 432 425

¶ USDA classification (Soil Survey Staff, 1975).

Table 5.2. Total monthly precipitation (P) and mean monthly maximum and minimum air

temperatures (T) recorded at the experimental site during the 2004-2005 period.

2004 2005 P T (ºC) P T (ºC) (mm) Max. Min. (mm) Max. Min.

January 10.3 12.7 3.1 2.4 7.2 0.0 February 43.4 9.8 0.5 6.9 10.4 -1.7 March 56.4 14.3 2.0 7.3 17.7 1.9 April 42.0 17.6 4.8 15.6 20.8 6.4 May 34.9 23.3 8.7 48.5 26.4 10.7 June 5.9 32.3 14.3 45.0 32.5 15.5 July 14.5 32.1 15.9 0.2 33.2 16.7 August 10.5 32.3 16.7 4.0 31.3 16.0 September 25.3 29.0 14.5 28.9 27.2 12.9 October 32.9 23.8 10.2 46.1 21.9 10.6 November 8.5 13.1 2.9 22.4 14.3 3.9 December 32.7 10.9 3.0 9.3 8.4 -1.8

2.2. Soil sampling

Soil samples were collected on nine different dates from February 2004 to September

2005. Sampling dates and related cropping phases are shown in Table 5.3. For

aggregate analyses, samples were collected with a flat spade from the 0-5 cm soil layer

Page 110: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

92Capítulo 5

and placed in crush-resistant, air-tight containers in order to avoid aggregate breaking

during sample transportation to the laboratory. On each sampling date, four composite

samples were collected from each plot. Once in the laboratory, two samples were stored

at 4 ºC and the other two samples were air dried and stored at room temperature. In

September 2005, a composite soil sample was taken from the 0-5 cm layer of each plot

to measure the total soil organic carbon (SOC) content. In this case, the soil samples

were air-dried, ground and sieved to 2 mm. Extra composite soil samples from each plot

were taken from March 2005 to September 2005 for the determination of microbial

biomass C.

Table 5.3. Sampling dates and cropping system phases (CC, continuous cropping; CF, barley-

fallow rotation).

Sampling date Cropping system Cropping system phase

10 February 2004 CC Crop growth CF Crop growth

4 May 2004 CC Crop growth CF Crop growth

4 July 2004 CC Post-harvest CF Post-harvest

6 September 2004 CC Fallow CF Fallow

22 November 2004 CC Sowing CF Fallow

8 March 2005 CC Crop growth CF Fallow

9 May 2005 CC Crop growth CF Fallow

1 July 2005 CC Post-harvest CF Fallow

19 September 2005 CC Fallow CF Fallow

2.3. Soil aggregation measurements

Soil aggregation was characterized by the dry aggregate size distribution and

water aggregate stability. The dry aggregate size distribution was measured by placing

200 g of air-dried soil (previously passed through a 8 mm sieve) on the top of a vertical

electromagnetic sieve apparatus (FRITSCH Analysette 3 PRO) equipped with a stack of

seven sieves with the following screens: 4, 2, 1, 0.85, 0.5, 0.25 and 0.05 mm. In order to

Page 111: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

93Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

determine the optimum combination of sieving time and amplitude (vertical vibration

height), a series of experiments testing different sieving times and amplitudes were

carried out using different soils. A sieving time of 5 minutes and with amplitude of 0.1

mm were finally fixed for our experiment. Dry soil remaining on each sieve was

collected and weighed. The mean weight diameter (MWD) of the soil aggregates

(Youker and McGuiness, 1957) was used to express dry aggregate size distribution.

8

MWD = ∑ XiWi [1]

i=1

where Xi is the mean diameter of the size fraction, and Wi is the proportion of total

sample weight retained on each sieve.

Dry aggregates between 1 and 2 mm were separated to determine the water aggregate

stability (WASAD) and soil organic carbon (SOC) for this aggregate size class. The

WASAD was measured using the procedure of Kemper and Rosenau (1986). Briefly,

four grams of 1-2 mm air-dried aggregates were placed on the top of a 0.25 mm sieve

and sieved in distilled water during 3 min with a stroke length of 1.3 cm and a

frequency of 35 strokes min-1. Soil retained on each sieve was transferred to an

aluminium pan and dried and weighed. Sand correction was made in all the samples by

dispersing the stable aggregates with sodium hexametaphosphate and sieving again

through a 0.25 mm sieve.

From the field moist soil samples, 1-2 mm aggregates were separated with the same

procedure described for the MWD determination. The same procedure for the air-dried

aggregates was used to measure the water stability of the field-moist aggregates

(WASFM).

2.4. Soil water content, SOC and microbial biomass

The gravimetric soil water content was measured from each sample taken for field-

moist WAS measurements, by oven drying a subsample at 105 ºC. The total SOC

content and the SOC content of the 1-2 mm aggregate size class was measured using the

wet oxidation method of Walkley and Black (Nelson and Sommers, 1982). The

microbial biomass C was measured using the chloroform-fumigation and direct

extraction method (Vance et al., 1987).

Page 112: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

94Capítulo 5

Daily precipitation and air temperature data were collected over the entire

experimental period using an automatic weather station (Campbell Scientific Inc.,

datalogger CR10) located within the experimental field.

2.5. Statistical analyses

Statistical analyses of data were performed using the SAS (SAS Institute, 1990).

Analyses of variance (ANOVA) were applied to compare tillage treatment. Differences

between means were tested with Duncan’s multiple range test. Regression analyses

were used to determine the relationships between aggregation indexes and SOC,

microbial biomass C and gravimetric soil water content.

3. Results and discussion

3.1. Tillage and cropping system effects

3.1.1. Dry aggregate size distribution

Dry aggregate size distribution was measured and represented as the mean

weight diameter (MWD) of soil aggregates. On average, in the CC system, the greatest

mean MWD (2.85 mm) was measured in NT followed by CT with 2.31 mm and RT

with 2.20 mm (Table 5.4). In the CF rotation, the greatest mean MWD was also

observed under NT (2.97 mm) but, in contrast to the CC system, followed by RT and

CT with 2.39 and 2.28, respectively (Table 5.4). Similar studies have also observed

greater MWD for dry aggregates in NT compared with tilled treatments (Unger and

Fulton, 1990; Sigh et al., 1994; Yang and Wander, 1998; Eynard et al., 2004). Yang and

Wander (1998) concluded that the aggregate size increases with the SOC content. In our

study, total SOC was greatest under NT (Table 5.5) and showed a marked degree of

correlation with mean MWD (R2=0.400; P<0.01) (Table 5.6). Furthermore, it was also

found a positive linear relationship between MWD and organic carbon content of the 1-

2 mm aggregates (Table 5.6). Shaver et al. (2003), under semiarid conditions, observed

that the macroaggregate content was closely related with the organic carbon of the

macroaggregates.

Page 113: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

95Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

Table 5.4. Tillage and cropping system effects on mean weight diameter (MWD), water

stability of air-dry 1-2 mm size aggregates (WASAD) and water stability of field moist 1-2 mm

size aggregates (WASFM) at the soil surface (0-5 cm depth) for the whole study period (February

2004 to September 2005).

Tillage treatment¶ Cropping system§ NT RT CT Mean

MWD CC 2.85a A‡ 2.20b B 2.31b A 2.45 A (mm) CF 2.97a A 2.39b A 2.28b A 2.55 A

CC 43a A 21b A 16c A 27 A WASAD (%) CF 18a B 12c B 15b A 15 B

CC 43a A 23b A 20b A 28 A WASFM (%) CF 27a B 20b A 18b A 22 A

§ CC, continuous barley cropping; CF, barley-fallow rotation. ¶ NT, no-tillage; RT, reduced tillage; CT conventional tillage. ‡ Different lower case letters indicate significant differences among tillage treatments within the same cropping system (P<0.05). Different upper case letters indicate significant differences between cropping systems within the same tillage treatment (P<0.05).

Differences in mean MWD among tillage treatments resulted from a different

proportion of aggregates among size classes. Thus, the greatest mean MWD value

observed in NT was mainly due to a significantly higher proportion of large

macroaggregates (>4 mm and 2–4 mm) in this treatment compared with CT and RT

(Fig. 5.1). On the contrary, the proportion of aggregates within the 0.5–0.84 and 0.25–

0.5 mm size classes were significantly lower under NT than under CT and RT (Fig.

5.1). In addition to mechanical breakage of aggregates by tillage operations, in RT and,

especially, in CT, insufficient residue cover on the soil surface does not protect the

integrity of soil aggregates against raindrop impact or abrasive winds during erosive

episodes (Saber and Mrabet, 2002; López et al., 2003).

A slightly greater mean MWD was measured in the CF rotation compared with the

CC system. Other similar studies under Mediterranean semiarid conditions have also

observed lower dry aggregation in cereal monocultures compared with cereal-fallow

rotations (Mrabet et al., 2001; Masri and Ryan, 2006).

Page 114: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

96Capítulo 5

Table 5.5. Tillage and cropping system effects on total soil organic carbon, 1-2 mm aggregate

organic C, microbial biomass C and soil water content at the soil surface (0-5 cm depth), for the

whole study period (February 2004 to September 2005).

Tillage treatment¶Soil property Cropping system§ NT RT CT CC 13.6a A‡ 10.4b A 9.0b A Total soil organic C

(g kg-1) CF 11.7a B 9.5ab A 8.0b A

CC 1.32a A 0.99b A 0.90b A 1-2 mm aggregate organic C (g kg-1) CF 1.13a B 0.93b A 0.87b A

CC 443a A 301b A 174c A Microbial biomass C (mg kg-1) CF 314a B 218b A 137c A

CC 0.20a A 0.19a A 0.20a A Soil water content (g g-1) CF 0.15a A 0.17a A 0.15a A § CC, continuous barley cropping; CF, barley-fallow rotation. ¶ NT, no-tillage; RT, reduced tillage; CT conventional tillage. ‡ Different lower case letters indicate significant differences among tillage treatments within the same cropping system (P<0.05). Different upper case letters indicate significant differences between cropping systems within the same tillage treatment (P<0.05).

Table 5.6. Determination coefficients (R2) of the regressions between soil aggregation indexes

(MWD, mean weight diameter; WASAD, water aggregate stability of air-dry 1-2 mm size

aggregates; WASFM, water aggregate stability of field moist 1-2 mm size aggregates) and soil

organic carbon, microbial biomass and soil water content..

Soil property MWD WASAD WASFM

Total soil organic C 0.400** 0.810*** 0.810***

1-2 mm aggregate organic C 0.620*** 0.910*** 0.830***

Microbial biomass 0.450** 0.720*** 0.630***

Soil water content 0.010 ns 0.050 ns 0.110 ns *** P<0.001; ** P<0.01; ns, not significant.

Page 115: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

97Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

0

5

10

15

20

25

30

35

40

>4 2–4 1–2 0.84–1 0.5–0.84 0.25–0.5 0.05–0.25 <0.05

CTNT RT

% to

tal s

oil aa

CCb b

a ab a b a aaa

b a ab a a aa

Fig. 5.1. Dry aggregate size distribution at the soil surface (0-5 cm depth) under three tillage

treatments (NT, no-tillage; RT, reduced tillage; CT, conventional tillage) averaged over the

whole study period (from February 2004 to September 2005) for continuous barley (CC) and

barley-fallow rotation (CF). Different letters above bars indicate significant differences among

tillage treatments within the same aggregate size class (P<0.05).

3.1.2. Water stability of air-dried aggregates (WASAD)

Slaking defined as the rupture and disintegration of dry aggregates due to a fast

wetting at atmospheric pressure (Kemper and Rosenau, 1986) led to a breakage of 1–2

mm aggregates in the three tillage treatments. This effect was especially significant in

CT and RT (Table 5.4). In the CC system, the greatest value of the mean WASAD was

measured under NT (43%), followed by RT (21%) and CT (16%) (Table 5.4). Likewise,

in the CF rotation, the greatest mean WASAD was also observed under NT (18%),

0

5

10

15

20

25

30

35

40

>4 2–4 1–2 0.84–1 0.5–0.84 0.25–0.5 0.05–0.25 <0.05

CF

a aa

a

ab

b

aa

aa

aa

a a

bb

b

b

b b

b

% to

tal s

oil

Aggregate size (mm)

Page 116: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

98Capítulo 5

followed in this case by CT (15%) and RT (12%) (Table 5.4). These results are in

agreement with other studies in which a greater water stability was found in aggregates

from NT compared with aggregates from other tilled systems (Carter, 1992; Smettem et

al., 1992; Cambardella and Elliot, 1993; Franzluebbers and Arshad, 1996; Six et al.,

1998; Eynard et al., 2004). In our study, the greater mean WAS under NT was related

with a greater total SOC, microbial biomass C and 1-2 mm aggregate C (Tables 5.5 and

5.6). It is well established that SOC increases the water stability of the aggregates

(Haynes and Swift, 1990; Hernanz et al., 2002) due to a greater cohesion of soil mineral

particles and to an increase of aggregate hydrophobicity (Chenu et al., 2000).

In relation with the intensification of the cropping system, a greater mean value of

WASAD was observed under the CC system than under the CF rotation (Table 5.4). The

suppression of long fallowing led to a greater SOC (Table 5.5) and, therefore, to an

increase in the WASAD. Several studies have observed greater WASAD when fallow is

removed from the cropping system (Saber and Mrabet, 2002; Shaver et al., 2002). The

later authors, comparing three no-tillage cropping systems with different cropping

intensity in semiarid Great Plains of the USA, concluded that a greater cropping

intensification leads to a greater water aggregate stability.

3.1.3. Water aggregate stability of field-moist aggregates (WASFM)

As observed for the air-dried aggregates, the mean WASFM was greater under NT

than under CT and RT in both cropping systems (Table 5.4). In the CC system, more

than 40% of the 1–2 mm aggregates were stables to water immersion, whereas in RT

and CT this stability decreased to 21% and 16%, respectively (Table 5.4). In the CF

system, 27% of NT field-moist aggregates were stable, whereas in RT and CT the mean

WASFM decreased to 20% and 18%, respectively (Table 5.4). Angers et al. (1993),

working with field-moist aggregates from different tillage systems, also found the

greatest aggregate stability under NT than under other tilled systems.

Chan et al. (1994) found lower water stability in air-dried aggregates than in field-

moist aggregates. They suggested that in field-moist aggregates slaking does not occur,

being the aggregate breakdown due to the mechanical disturbance of the sieving action.

In our study, in the CC system, the mean values of WASAD and WASFM were similar. In

the CF rotation, a slightly greater mean water aggregate stability was measured for

field-moist aggregates than for air-dried aggregates. We suggest that in plots with high

SOC content (e.g., NT in the CC system) the differences between WASFM and WASAD

Page 117: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

99Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

were minimum since soil mineral particles were strongly bounded and aggregates had a

high degree of hydrophobicity (Haynes and Swift, 1990).

As observed with the WASAD, the WASFM had a strong relationship with the total

SOC, microbial biomass C and 1-2 mm aggregate C (Table 5.6).

3.2. Temporal variation in soil aggregation

3.2.1. Temporal variation of the aggregate mean weight diameter (MWD)

The temporal variation of the MWD is shown in Fig. 5.2. In both the CC and CF

cropping systems, the lowest MWD was observed under RT in September 2004 and the

greatest values in May 2004.

In all the tillage treatments there was observed an increase in the MWD during the

crop growth phase of the 2004 cropping season (from January to May 2004) in the CC

and CF systems and in the NT and CT tillage treatments of the CC system during the

crop growth phase of the 2005 cropping season (Fig. 5.2). However, during the fallow

phase of the CF rotation (from December 2004 to June 2005) the MWD kept steady in

the three tillage treatments (Fig. 5.2). This observation suggests that crop growth had a

stimulant effect on the MWD in all the tillage treatments. Plant development,

specifically, root growth promotes soil aggregation due to the release of organic

compounds in two different ways: by binding soil particles together and by stimulating

soil microorganisms activity (Angers and Caron, 1998; Six et al., 2004). Gupta and

Germida (1988) concluded that microbial biomass plays an important role in

macroaggregate formation. In our study, soil microbial biomass was measured during

the 2005 season and it was more related to the MWD during the crop phase in the CC

system than during fallowing in the CF rotation (Fig. 5.3). Thus, when crop died (June

2004) a decrease in MWD was measured in both cropping systems and in all the tillage

treatments.

In the CC system, the MWD values were greater in 2004 than in 2005. We suggest

that a higher precipitation measured during the 2004 growing season led to a greater

crop growth and greater root activity compared with the 2005 season. In our study,

while a total precipitation of 212 mm was recorded during the 2003-2004 growing

season, the amount of rain measured during the 2004-2005 growing season was only

158 mm (Table 5.2). This difference in seasonal precipitation led to a marked difference

in crop biomass between cropping seasons: 6235 kg ha-1 and 1014 kg ha-1 (average of

the three tillage treatments in the CC system) in 2004 and 2005, respectively. The

Page 118: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

100Capítulo 5

MWD peak observed in May 2004 suggested that an important crop and root growth at

that time led to a significant activity in the rhizosphere and, therefore, to the formation

of large aggregates. Angers and Mehuys (1988), likewise, related the increases in MWD

during barley growth with the growth of the root system.

0.0

0.5

1.0

1.5

0

2.5

3.0

3.5

4.0

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

RTNT CT

MW

D (m

m)

2.

CC

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

SowingHarvest Harvest

MW

D (m

m)

CF

Harvest Time

Fig. 5.2. Temporal variation of the mean weight diameter (MWD) at the soil surface (0-5 cm

depth) as affected by tillage (NT, no-tillage; RT, reduced tillage; CT, conventional tillage) and

cropping system (CC, continuous barley cropping; CF, barley-fallow rotation) over the study

period (February 2004 to September 2005). Bars indicate LSD (P<0.05) for comparisons among

tillage treatments at the same date where significant differences were found.

Another factor that might help to explain the differences in MWD between cropping

seasons and tillage treatments is soil moisture content at the time of sampling. Yang and

Wander (1998), studying variations in MWD over a growing season in a corn-soybean

Page 119: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

101Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

rotation, concluded that temporal variation in dry aggregate size was affected by several

interacting factors, such as soil moisture and tillage and cropping practices. However, in

our study, the relationship found between soil moisture at the time of sampling and

MWD was low and not significant.

ns MWD = 0.0023x + 1.9488

R2 = 0.2356

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 100 200 300 400

CF

MWD = 0.0017x + 1.7216 R2 = 0.4456

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 100 200 300 400 500 600

*

CC

MW

D (m

m)

Microbial biomass C (mg C kg -1 soil)

Fig. 5.3. Relationship between mean weight diameter (MWD) of dry aggregates and soil

microbial biomass C for the crop phase of a continuous barley cropping (CC) and the fallow

phase of a barley-fallow rotation (CF) (ns, not significant; * significant at the 0.05 probability

level).

3.2.2. Temporal variation in water stability of air-dried aggregates (WASAD)

In the CC system, the greatest WASAD was observed in May 2005 under the NT

treatment and the lowest in February 2005 under CT (Fig. 5.4). In the CF rotation, the

greatest WASAD was measured in September 2004 under NT and the lowest in

September 2005 under CT.

In both cropping systems, there was measured an increase in WASAD during the crop

growth period (March-May) (Fig. 5.4), as it was observed in the MWD. However,

during the fallow phase of the CF rotation (December 2004-Sepetember 2005), WASAD

kept low and steady.

Crop growth could have increased aggregate stability through the following

mechanisms: (a) physical enmeshment of fine particles into stable macroaggregates due

to root growth (Amézketa, 1999); (b) root release of soluble organic exudates that

increased aggregate water stability (Traoré et al., 2000); (c) simultaneous stimulation of

microbial activity by these root secretions, which promoted the entrapment of soil

particles by microbial hyphae (Oades and Waters, 1991). In our study, microbial

Page 120: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

102Capítulo 5

biomass appeared to be a main factor affecting water stability of aggregates due to the

significant linear relationship (P<0.001) found between WASAD and microbial biomass

C (Fig. 5.5).

NT RT CT

0

10

20

30

40

60

70

80

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

CC

WA

S AD (%

)

50

SowingHarvest Harvest

0

10

20

30

40

50

60

70

80

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

Harvest Time

CF

WA

S AD (%

)

Fig. 5.4. Temporal variation of water stability of air-dried 1-2 mm size aggregates (WASAD) at

the soil surface (0-5 cm depth) as affected by tillage (NT, no-tillage; RT, reduced tillage; CT,

conventional tillage) and cropping system (CC, continuous cropping; CF, barley-fallow

rotation), over the study period (from February 2004 to September 2005). Bars indicate LSD

(P<0.05) for comparison among tillage treatments at the same date where significant differences

were found.

Page 121: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

103Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

The lack of root activity during the fallow phase of the CF system, resulted in a loss

of water stable aggregates in all the tillage treatments (Fig. 5.4). Oades (1984)

concluded that fallowing practice was the most harmful management practice for soil

structure because the proportion of water stable macroaggregates declines due to the

absence of an active root system.

WAS = 0.0008x + 0.0163R2 = 0.649

0

10

20

30

40

50

60

0 100 200 300 400 500 600

***

WA

S AD (%

)

Microbial biomass C (mg C kg -1 soil)

Fig. 5.5. Relationship between water stability of air-dried 1-2 mm aggregates (WASAD) and soil

microbial biomass C (*** significant at the 0.001 probability level).

Regarding soil water content at the time of sampling as a soil factor affecting

WASAD, Perfect et al. (1990) concluded that this factor mainly explains the temporal

variation in WASAD. They observed greater WASAD at low soil water contents.

However, other studies have found an opposite trend that is greater WASAD at high soil

moisture contents (Angers, 1992; Caron et al., 1996). In our study, the three WASAD

peaks observed in July 2004 and May 2005 in the CC system and in September 2004 in

the CF rotation (Fig. 5.4) were coincident with the highest values of soil moisture (Fig.

5.6). When regression analyses between WASAD and soil moisture were performed, for

the whole study period, a low and a not significant relationship was obtained (R2=0.14).

Therefore, in our conditions soil water content at sampling had a low effect on the water

stability of air-dried aggregates.

Page 122: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

104Capítulo 5

CC

CF

Time

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05SowingHarvest Harvest

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

Harvest

RTNT CTS

oil w

ater

con

tent

(g g

-1)

Soi

l wat

er c

onte

nt (g

g-1

)

Fig. 5.6. Variation of gravimetric soil water content at the soil surface (0-5 cm depth) as

affected by tillage (NT, no-tillage; RT, reduced tillage; CT, conventional tillage) and cropping

system (CC, continuous barley cropping; CF, barley-fallow rotation) over the study period

(February 2004 to September 2005). Bars indicate LSD (P<0.05) for comparison among tillage

treatments at the same date where significant differences were found.

3.2.3. Temporal variation in water stability of field-moist aggregates (WASFM)

The water stability of field-moist aggregates (WASFM) followed a similar trend than

that found for the water stability of air-dried aggregates (WASAD) and showed high

values during crop growth especially under NT (Fig. 5.7).

It is worth mentioning that from February 2004 to May 2004 there was a marked

increase in WASFM (Fig. 5.7). This increase was, however, more gradual than that

observed for air-dried aggregates (Fig. 5.4). Different aggregate water content and,

consequently, different behaviour against the slaking process (Chan et al., 1994) could

Page 123: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

105Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

explain this difference in water stability between field-moist and air-dried soil

aggregates. As it was observed for WASAD, regression analyses between soil water

content at sampling and WASFM was low and not significant (R2=0.05; P<0.10).

Time

0

10

20

30

40

50

60

70

80

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05SowingHarvest Harvest

0

10

20

30

40

50

60

70

80

Jan-04 Apr-04 Jul-04 Oct-04 Jan-05 Apr-05 Jul-05 Oct-05

Harvest

CF

CC

RTNT CT

WA

S FM (%

)

WA

S FM (%

)

Fig. 5.7. Temporal variation of water stability of field-moist 1-2 mm size aggregates (WASFM)

at the soil surface (0-5 cm depth) as affected by tillage (NT, no-tillage; RT, reduced tillage; CT,

conventional tillage) and cropping system (CC, continuous cropping; CF, barley-fallow

rotation), over the study period (from February 2004 to September 2005). Bars indicate LSD

(P<0.05) for comparison among tillage treatments at the same date where significant differences

were found.

Page 124: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

106Capítulo 5

4. Conclusions

A reduction in tillage intensity improved soil aggregation. Greater soil organic

carbon (SOC) content and microbial biomass under no-tillage led to an increase in the

mean weight diameter (MWD) and water stability of soil aggregates as compared to

reduced tillage (chisel ploughing) and conventional tillage (mouldboard ploughing).

During the period of vegetative growth of barley crop under continuous cropping and

crop-fallow rotation soil aggregation increased due to the effect of root development

and soil microorganism activity in the formation of soil aggregates. Organic compounds

excreted by roots have been described as main agents for aggregate formation due to a

direct binding effect of soil mineral particles and an indirect microbial activity

stimulation effect. Nevertheless, when the crop died and roots stopped to release organic

binding agents, the formation of large and stable aggregates decreased.

Long-fallowing in the barley-fallow rotation led to a decrease in the water stability of

soil aggregates although the aggregate size was not affected. Lower SOC content and

microbial activity reduced the amount of stable aggregates in that rotation.

Soils in the semiarid Mediterranean agroecosystems are characterised by a low soil

organic matter content and a weak soil structure. In this study, we have demonstrated

that the use of no-tillage and the suppression of long-fallowing may lead to an increase

in soil aggregation and structural stability in these agroecosystems. In semiarid regions,

where rainfall and consequently soil water content is the most limiting factor for crop

production, an improvement in aggregate stability and soil structure may lead to better

water infiltration and retention in the soil profile and ultimately to better crop yields.

References

Amézketa, E. 1999. Soil aggregate stability: a review. J. Sustain. Agr. 14, 83-151.

Angás, P., Lampurlanés, J., Cantero-Martínez, C. 2006. Tillage and N fertilization

effects on N dynamics and barley yield under semiarid Mediterranean conditions.

Soil Till. Res. 87, 59-71.

Angers, D.A. 1992. Changes in soil aggregation and organic carbon under corn and

alfalfa. Soil Sci. Soc. Am. J. 56, 1244-1249.

Angers, D.A., Caron, J. 1998. Plant-induced changes in soil structure: processes and

feedbacks. Biogeochemistry 42, 55-72

Angers, D.A., Mehuys, G.R. 1988. Effects of cropping on macro-aggregation of a

marine clay soil. Can. J. Soil Sci. 68, 723-732.

Page 125: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

107Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

Angers, D.A., Samson, N., Légère, A. 1993. Early changes in water-stable aggregation

induced by rotation and tillage in a soil under barley production. Can. J. Soil Sci.

73, 51-59.

Balesdent, J., Chenu, C., Balabane, M. 2000. Relationship of soil organic matter

dynamics to physical protection and tillage. Soil Till. Res. 53, 215-230.

Bronick, C.J., Lal, R. 2005. Soil structure and management: a review. Geoderma 124, 3-

22.

Bruce, J.P., Frome, M., Haites, E., Janzen, H., Lal, R., Paustian, K. 1999. C

sequestration in soils. J. Soil Water Conserv. 54, 382-389.

Cambardella, C.A., Elliot, E.T. 1993. Carbon and nitrogen distribution in aggregates

from cultivated and native grassland soils. Soil Sci. Soc. Am. J. 57, 1071-1076.

Caron J., Espindola, C.R., Angers, D.A. 1996. Soil structural stability during rapid

wetting: influence of land use on some aggregate properties. Soil Sci. Soc. Am. J.

60, 901-908.

Carter, M.R. 1992. Influence of reduced tillage systems on organic matter, microbial

biomass, macro-aggregate distribution and structural stability of the surface soil in

a humid climate. Soil Till. Res. 23, 361-372.

Chan, K.Y., Heenan, D.P., Ashley, R. 1994. Seasonal changes in surface aggregate

stability under different tillage and crops. Soil Till. Res. 28, 301-314.

Chenu, C., Le Bissonais Y., Arrouays, D. 2000. Organic matter influence on clay

wettability and soil aggregate stability. Soil Sci. Soc. Am. J. 64, 1479-1486.

Eynard, A., Schumacher, T.E., Lindstrom, M.J., Malo, D.D. 2004. Aggregate sizes and

stability in cultivated South Dakota prairie Ustolls and Usterts. Soil Sci. Soc. Am.

J. 68, 1360-1365.

Franzluebbers, A.J., Arshad, M.A. 1996. Water-stable aggregation and organic matter in

four soils under conventional and zero tillage. Can. J. Soil Sci. 76, 387-393.

Gupta, V.V.S.R., Germida, J.J. 1988. Distribution of microbial biomass and its activity

in different soil aggregate size classes as affected by cultivation. Soil Biol.

Biochem. 20, 777-786.

Haynes, R.J., Swift, R.S. 1990. Stability of soil aggregates in relation to organic

constituents and soil water content. J. Soil Sci. 41, 73-83.

Hernanz, J.L., López, R., Navarrete L., Sánchez-Girón, V. 2002. Long-term effects of

tillage systems and rotations on soil structural stability and organic carbon

stratification in semiarid central Spain. Soil Till. Res. 66, 129-141.

Page 126: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

108Capítulo 5

Kemper, W.D., Rosenau, R.C. 1986. Aggregate stability and size distribution. P. 425-

442. In: A. Klute (ed.) Methods of Soil Analysis. Part 1. Physical and

mineralogical methods. ASA Book series No. 9 Agronomy. Madison, WI, USA.

Kong, A.Y.Y., Six, J., Bryant, D.C., Denison, R.F., Van Kessel, C. 2005. The

relationship between carbon input, aggregation, and soil organic carbon

stabilization in sustainable cropping systems. Soil Sci. Soc. Am. J. 69, 1078-1085.

Lampurlanés, J., Angás, P., Cantero-Martínez, C. 2002. Tillage effects on water storage

during fallow and on barley root growth and yield in two contrasting soils in the

semiarid Segarra region in Spain. Soil Till. Res. 65, 207-220.

López, M.V., Arrúe, J.L., Sánchez-Girón, V. 1996. A comparison between seasonal

changes in soil water storage and penetration resistance under conventional and

conservation tillage systems in Aragón. Soil Till. Res. 37, 251-271.

López, M.V., Gracia, R., Arrúe, J.L. 2000. Effects of tillage on soil surface properties

affecting wind erosion in semiarid fallow lands of Central Aragón. Eur. J. Agron.

12 , 191-199.

López, M.V., Moret, D., Gracia, R., Arrúe, J.L. 2003. Tillage effects on barley residue

cover during fallow in semiarid Aragon. Soil Till. Res. 72, 53-64.

López, M.V., Sabre, M., Gracia, R., Arrúe, J.L., Gomes, L. 1998. Tillage effects on soil

surface conditions and dust emissions by wind erosion in semiarid Aragón (NE

Spain). Soil Till. Res. 45, 91-105.

Masri, Z., Ryan, J. 2006. Soil organic matter and related physical properties in a

Mediterranean wheat-based rotation trial. Soil Till. Res. 87, 146-154.

Moret, D., Arrúe, J.L., López, M.V., Gracia, R. 2006. Influence of fallowing practices

on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain).

Agric. Water Managem. 82, 161-176.

Mrabet, R., Saber, N., El-Brahli, A., Lahlou, S., Bessam, F. 2001. Total, particulate

organic matter and structural stability of a Calcixeroll soil under different wheat

rotations and tillage systems in a semiarid area of Morocco. Soil Till. Res. 57,

225-235.

Nelson, D.W., Sommers, L.E. 1982. Total carbon, organic carbon and organic matter. P.

539-579. In: A.L. Page et al. (ed.), Methods of Soil Analysis, Part 2, 2nd Edition

Agronomy, Vol. 9. Soil Science Society of America, Madison, WI, USA.

Oades, J.M. 1984. Soil organic matter and structural stability: mechanisms and

implications for management. Plant Soil 76, 319-337.

Page 127: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

109Tillage and Cropping Intensification Effects on Soil Aggregation under Semiarid Conditions

Oades, J.M., Waters, A.G. 1991. Aggregate hierarchy in soils. Aust. J. Soil Res. 29,

815-828.

Paustian, K., Six, J., Elliot, E.T., Hunt, H.W. 2000. Management options for reducing

CO2 emissions from agricultural soils. Biogeochemistry. 48, 147-163.

Perfect, E., Kay, B.D., van Loon, W.K.P., Sheard, R.W., Pojasok, T. 1990. Factors

influencing soil structural stability within a growing season. Soil Sci. Soc. Am. J.

54, 173-179.

Puget, P., Chenu, C., Balesdent, J. 1995. Total and young organic matter distributions in

aggregates of silty cultivated soils. Euro. J. Soil Sci. 46, 449-459.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC,

USA.

Saber, N., Mrabet, R. 2002. Impact of no tillage and crop sequence on selected soil

quality attributes of a vertic calcixeroll soil in Morocco. Agronomie. 22, 451-459.

Shaver, T.M., Peterson, G.A., Ahuja, L.R., Westfall, D.G., Sherrod, L.A., Dunn, G.

2002. Surface soil physical properties after twelve years of dryland no-till

management. Soil Sci. Soc. Am. J. 66, 1296-1303.

Shaver, T.M., Peterson, G.A., Sherrod, L.A. 2003. Cropping intensification in dryland

systems improves soil physical properties: regression relations. Geoderma 116,

149-164.

Singh, B., Chanasyk, D.S., McGill, W.B., Nyborg, M.P.K. 1994. Residue and tillage

management effects on soil properties of a typic cryoboroll under continuous

barley. Soil Till. Res. 32, 117-133.

Six J., Bossuyt, H., Degryze, S., Denef, K. 2004. A history of research on the link

between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Till.

Res. 79, 7-31.

Six, J., Elliot, E.T., Paustian, K., Doran, J.W. 1998. Aggregation and soil organic matter

accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62,

1367-1377.

Six, J., Feller, C., Denef, K., Ogle, S.M., Moraes Sa, J.C., Albrecht, A. 2002. Soil

organic matter, biota and aggregation in temperate and tropicals soils-Effects of

no-tillage. Agronomie 22, 755-775.

Smettem, K.R.J., Rovira, A.D., Wace, S.A., Wilson, B.R. Simon, A. 1992. Effect of

tillage and crop rotation on the surface stability and chemical properties of a red-

brown earth (Alfisol) under wheat. Soil Till. Res. 22, 27-40.

Page 128: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

110Capítulo 5

Soil Survey Staff. 1975. Soil taxonomy, a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook 436. US Gov. Print.

Office, Washington, DC, USA.

Tisdall, J.M., Oades, J.M. 1982. Organic matter and water-stable aggregates in soils. J.

Soil Sci. 33, 141-163.

Traoré, O., Groleau-Renaud, V., Plantureux, S., Tubeileh, A., Boeuf-Tremblay, V.

2000. Effect of root mucilage and modelled root exudates on soil structure. Eur. J.

Soil Sci. 51, 575-581.

Unger, P.W., Fulton, L.J. 1990. Conventional and no-tillage effects on upper root zone

soil conditions. Soil Till. Res. 16, 337-344.

Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987. An extraction method for measuring

soil microbial biomass C. Soil Biol. Biochem. 19, 703-707.

Yang, X., Wander, M.M. 1998. Temporal changes in dry aggregate size and stability:

tillage and crop effects on a silty loam Mollisol in Illinois. Soil Till. Res. 49, 173-

183.

Youker RE, McGuiness JL. 1957. A short method of obtaining mean weight-diameter

values of aggregate analyses of soils. Soil Sci. 83, 291-294.

Page 129: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 6

Soil Carbon Dioxide Fluxes Following Tillage in

Semiarid Mediterranean Agroecosystems

Page 130: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

113

Soil Carbon Dioxide Fluxes Following Tillage in Semiarid

Mediterranean Agroecosystems

ABSTRACT

In semiarid Mediterranean agroecosystems, low and erratic annual rainfall

together with the widespread use of mouldboard ploughing, as the main traditional

tillage practice, has led to a depletion of soil organic matter (SOM). Losses of SOM

content are associated with increases in CO2 emissions from soil to the atmosphere

and, thus, with the contribution to the terrestrial global warming. In this study, we

evaluated the viability of conservation tillage, especially no-tillage (NT) to reduce

short-term (from 0 h to 48 h after a tillage operation) and mid-term (from 0 h to

several days since tillage operation) tillage-induced CO2 emissions. The study was

conducted in three long-term tillage experiments located at different sites of the

Ebro river valley (NE Spain) across a precipitation gradient. Soil temperature and

water content were also measured in order to determine their influence on tillage-

induced CO2 fluxes. The 90% of the CO2 fluxes measured immediately after tillage

ranged from 0.17 to 6 g CO2 m-2 h-1 and were from three- to fifteen-times greater

than fluxes before tillage operations, except in NT where soil CO2 fluxes were low

and steady during the whole study period. Mid-term CO2 emissions showed a

different trend depending on the time of the year in which tillage was

implemented. Microclimatic soil conditions (soil temperature and water content)

had little impact on soil CO2 emissions during tillage. In semiarid Mediterranean

agroecosystems, the adoption of NT led to a reduction on soil CO2 effluxes

compared with other soil tillage systems (e.g. conventional and reduced tillage),

thus contributing to mitigate greenhouse gases emissions.

Page 131: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

114Capítulo 6

1. Introduction

Land-use changes and soil cultivation have led to a depletion of soil organic matter

(SOM) content (Paustian et al., 1997; Lal, 2004). Losses in SOM content are associated

with reductions in soil productivity (Bauer and Black, 1994) and with increases in CO2

emissions from soil to the atmosphere (Paustian et al., 1998; Schlesinger, 2000).

Soil CO2 produced by microbial decomposition is stored in soil pores and emitted to

atmosphere mainly by a process of diffusive transport due to concentration gradients

(Rolston, 1986). However, this process is altered during tillage implementation when an

increase in soil CO2 fluxes has been observed immediately after tillage (Reicosky and

Lindstrom, 1993; Prior et al., 1997; Reicosky et al., 1997; Ellert and Janzen, 1999;

Alvarez et al., 2001). Roberts and Chan (1990), who observed an increase in soil CO2

emissions after a simulated tillage experiment, concluded that greater microbial

respiration was not the main reason of the soil organic carbon (SOC) looses after tillage.

Later, Reicosky and Lindstrom (1993) related the increment in CO2 fluxes observed in

various tillage systems with different soil roughness and tillage intensity. On the other

hand, Reicosky et al. (1997), measuring CO2 fluxes and soil inorganic N after tillage,

did not find a clear relationship between high CO2 fluxes after tillage and the increase of

inorganic N. Therefore, they concluded that the increase in CO2 fluxes immediately

after tillage (short-term) is the result of a physical release of the CO2 entrapped in soil

pores from previous microbial activity rather than changes in microbial activity at the

time of tillage. Besides this burst effect on soil CO2 fluxes, tillage also accelerates SOM

decomposition. Tillage contributes to the mixing of new fresh residue with soil,

modifying the soil profile characteristics (e.g., aeration, moisture and temperature

regimes) and promoting soil microbial activity (Doran, 1980; Reicosky et al., 1995;

Peterson et al., 1998). At the same time, tillage promotes macroaggregate turnover

exposing protected SOM to soil microorganisms (Six et al., 1998, 1999).

Several studies have observed greater CO2 fluxes under conventional tillage

compared with no-tillage during several days following tillage due to a promoting effect

of tillage on soil microbial activity (Reicosky, 1997; Dao, 1998; Rochette and Angers,

1999; Alvarez et al., 2001). Rochette and Angers (1999), measuring CO2 fluxes along

several days after fall, spring and summer mouldboard ploughing, observed that soil

microclimatic conditions following tillage events play an important role in CO2

emissions between dates.

Page 132: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

115Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Semiarid dryland agroecosystems of the Ebro river valley (northeast Spain) are

characterised by a low and erratic annual rainfall and by high evapotranspiration rates

and, as a consequence, by low crop yields and crop residue production. These features,

together with the traditional widespread use of mouldboard ploughing as the main

tillage operation, have led to low SOC contents in those agroecosystems. Since there is

no previous information about the influence of tillage practices on short-term soil CO2

fluxes in Mediterranean semiarid agroecosystems, we hypothesized that soil CO2

emissions may be reduced by the adoption of conservation tillage practices, especially

with no-tillage, as it was found in similar experiments carried out in other semiarid

areas (Kessavalou et al., 1998; Ellert and Janzen, 1999).

Knowledge about the influence of tillage practices on soil CO2 fluxes in these

semiarid agroecosystems is essential in order to establish strategies that help to reduce

SOM losses and, thus, to improve soil and crop productivity and mitigate greenhouse

gases emissions.

The objectives of this study were to (i) quantify the short-term and mid-term impacts

of tillage on soil CO2 fluxes following different tillage systems, and (ii) determine the

influence of soil microclimatic conditions, site and time of ploughing on short-term soil

CO2 fluxes.

2. Materials and methods

2.1. Sites, tillage and cropping systems

The experiment was conducted over a 2-yr period from March 2003 to March 2005

at three different long-term tillage experiments located across the Ebro river valley (NE

Spain). These sites were chosen due to differences in soil, climate and technology

conditions. The Selvanera and Agramunt experimental sites, established in 1987 and

1990, respectively, were located in the Lleida province at dryland farms managed by the

Agronomy Group of the University of Lleida. The third experimental site, Peñaflor, was

established in 1989 at the dryland research farm of the Estación Experimental Aula Dei

(Consejo Superior de Investigaciones Científicas) in the Zaragoza province. More

details on the experimental sites and soils are given in Table 6.1.

Page 133: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

116Capítulo 6

Table 6.1. Site and soil (Ap horizon) characteristics.

Study sites Climate and

soil characteristics Selvanera Agramunt Peñaflor

Latitute 41º 50’N 41º 48’N 41º 44’N Longitude 1º 17’E 1º 07’E 0º 46’W Elevation (m) 475 330 270 Mean annual air temperature (ºC) 13.9 14.2 14.5 Mean annual precipitation (mm) 475 430 390

Soil classification ¶ Xerocrept fluventic

Xerofluvent typic

Xerollic Calciorthid

Ap horizon depth (cm) 37 28 30 pH (H2O, 1:2.5) 8.3 8.5 8.23 EC1:5 (dS m-1) 0.16 0.15 0.29

Water retention (g g-1) -33 kPa 0.16 0.16 0.20 -1500 kPa 0.04 0.05 0.11

Particle size distribution (%) Sand (2000-50 µm) 36.5 30.1 32.4 Silt (50-2 µm) 46.4 51.9 45.5 Clay (< 2 µm) 17.1 17.9 22.2

SOC (0-20 cm; g m-2)

No-tillage (NT) 2942 3111 2743§ 2306‡

Reduced tillage (RT) – 2876 2285 2154 Subsoil tillage (ST) 2947 2592 – – Conventional tillage (CT) 2869 2541 2278 2021 ¶ USDA classification (Soil Survey Staff, 1975). § SOC in PN-CC (Peñaflor site under continuous cropping system). ‡ SOC in PN-CF (Peñaflor site under cereal-fallow rotation)

In Selvanera (SV), three tillage treatments were compared: conventional tillage

(CT), subsoil tillage (ST) and no-tillage (NT). The CT and RT treatments consisted of a

subsoiler tilling at 40 cm and 25 cm depth, respectively. In this site, the cropping system

was a wheat-barley-wheat-rapeseed rotation and tillage was implemented in August. In

Agramunt (AG), four tillage treatments were compared: conventional tillage (CT),

subsoil tillage (ST), reduced tillage (RT) and no-tillage (NT). The CT treatment

consisted of a mouldboard ploughing operation to a depth of 25-30 cm. The ST

treatment consisted of a subsoiler pass at 25 cm depth. The RT treatment consisted of a

cultivator pass to a depth of 15 cm. In Agramunt, the cropping system consisted of a

barley-wheat rotation and tillage was implemented in November. In Peñaflor (PN),

three tillage treatments (CT, RT and NT) were compared under both the traditional

Page 134: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

117Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

cereal-fallow rotation (PN-CF) and under continuous cropping (PN-CC) with barley. In

the CC system, the CT treatment consisted of mouldboard ploughing to a depth of 30-40

cm in November as primary tillage. The RT treatment was implemented also in

November by chisel ploughing to a depth of 25-30 cm. At the three experimental sites,

in the NT treatment no tillage operations were done and for sowing a direct drill planter

was used. In NT plots the soil was kept free of weeds by spraying a total herbicide

(glyphosate).

In PN-CC 2003, primary tillage in the CT and RT treatments was followed by a pass

with a rotovator as secondary tillage. No secondary tillage was implemented in PN-CC

2004. In the PN-CF rotation, primary tillage operations were carried out in winter

(February-March) using the same implements and ploughing depths as in PN-CC. No

secondary tillage was performed at PN-CF. In PN-CF 2003 and PN-CF 2005,

mouldboard ploughing in the CT plots was followed by a pass with a tractor-mounted

scrubber as a traditional practice to break down large clods.

At all sites, tillage treatments were arranged in a randomized complete block design

with three replicates in SV, PN-CC and PN-CF and with four replicates in AG. The plot

size was 50 m x7 m at SV, 50 m x 9 m at AG and 33 m x10 m at PN-CC and PN-CF.

2.2. Experimental measurements

2.2.1. Soil CO2 fluxes

Soil CO2 fluxes were measured using an open chamber system (model CFX-1,

PPSystems, Hertfordshire, London) connected to an infrared gas analyzer (model EGM-

4, PPSystems, Hertfordshire, London) (Fig. 6.1). This system was based in the chamber

designed by Rayment and Jarvis (1997), which was developed to ensure that

atmospheric pressure fluctuations were transferred through to the soil surface. The soil

CO2 flux was calculated from the difference in CO2 concentration between air entering

and leaving the chamber. The chamber has a cylindrical diameter of 21 cm, covering a

soil surface of 346 cm2. Each plot was divided in two regions and a measurement per

region was taken each time. The chamber was inserted 3 cm into the soil to prevent CO2

leaks to the atmosphere. The flux readings were taken 3 minutes after the chamber was

inserted into the soil in order to avoid possible unrealistic values caused by the

disturbance produced after placing the chamber into the soil (Pumpanen et al., 2004).

Short-term soil CO2 fluxes were measured during eight different tillage events

between March 2003 and March 2005. In all the experimental fields, soil CO2 fluxes

Page 135: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

118Capítulo 6

were determined several times from 24 hours prior tillage to 48 hours after each tillage

operation. Table 6.2 shows the times of measurements and dates of tillage operations

during the experimental period. In addition, in both PN-CC 2003 and PN-CF 2003, soil

CO2 fluxes were measured over a period of 8 and 18 days after the first tillage event,

respectively. The idea of extending the measurement period was aimed to study the

effect of tillage on mid-term soil CO2 emissions.

Fig. 6.1. Open soil chamber measuring soil CO2 emissions immediately after mouldboard

ploughing.

2.2.2. Soil temperature and soil moisture content

Soil temperature was measured with a hand-held probe (model STP-1, PPSystems,

Hertfordshire, London) which was inserted 5 cm into the soil 5 cm away from the edge

of the CO2 chamber. A soil temperature value was recorded at the same time as the soil

CO2 flux was recorded. Likewise, with each CO2 measurement a soil-surface sample

was collected to a depth of 5 cm to determine the gravimetric soil water content by oven

drying the soil at 105 ºC. Soil temperature and soil water content were measured prior to

tillage, immediately after tillage and 24 h and 48 h after tillage.

Daily air temperature and precipitation observations were made at the experimental

sites using automated weather stations.

Page 136: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

119Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Table 6.2. Schedule of soil CO2 measurements for each experimental site (SV, Selvanera site;

AG, Agramunt site; PN-CC, Peñaflor site under continuous cropping and PN-CF, Peñaflor site

under cereal-fallow rotation) and tillage treatment (CT, conventional tillage; ST, subsoil tillage;

RT, reduced tillage; NT, no-tillage).

Experimental

field

Tillage

treatment

Tillage date Measurements since

1st tillage (hours) †

SV CT, ST 22 July 2003 (1st tillage) -24, 0, 3, 6, 24, 48 CT, ST 10 August 2004 (1st tillage) -24, 0, 3, 24, 48

AG CT, ST, RT 21 November 2003 (1st tillage) -24, 0, 3, 6, 24, 48 CT, ST, RT 11 November 2004 (1st tillage) -24,0, 3, 6, 24, 48

PN-CC CT, RT 25 November 2003 (1st tillage) -24, 0, 3, 6, 24, 48 CT, RT 2 December 2003 (2nd tillage) 144, 168, 171, 192

PN-CC CT, RT 10 November 2004 (1st tillage) -24, 0, 3, 6, 24

PN-CF CT, RT 19 March 2003 (1st tillage) -24, 0, 6, 24, 48, 264 CT 7 April 2003 (clod crusher) 384, 408, 414, 432

PN-CF CT, RT 9 March 2005 (1st tillage) -24, 0, CT 9 March 2005 (clod crusher) 1, 3, 6, 24, 48

† Measurements were also made in the NT plots.

2.3. Statistical analyses

Statistical analyses of data were performed using the SAS (SAS Institute, 1990).

Analyses of variance (ANOVA) were applied to compare tillage treatments. Differences

between means were tested with Duncan’s multiple range test. Regressions analyses

were used to determine the relationships between soil CO2 fluxes and soil temperature

and soil water content.

3. Results and discussion

3.1. Tillage effects on short-term soil CO2 fluxes

A significant increase of CO2 fluxes was observed immediately after tillage

operations in all the tillage treatments excepting NT (Figs. 6.2 and 6.3). These CO2

peaks just after tillage were the greatest in all the study periods and ranged from 0.17 g

CO2 m-2 h-1 under RT in PN-CF 2003 to 13 g CO2 m-2 h-1 under CT in AG 2003 with

more than the 90% of the values in the range of 0.17 to 6 g CO2 m-2 h-1, in agreement

with fluxes observed in other similar experiments. Thus, Kessavalou et al. (1998) in a

semiarid wheat-fallow system of Nebraska found CO2 fluxes nearly 1 g CO2 m-2 h-1

immediately after subtilling. Rochette and Angers (1999), after mouldboard ploughing,

measured CO2 fluxes ranging between 1.3 and 3.2 g CO2 m-2 h-1. Reicosky et al. (1997),

Page 137: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

120Capítulo 6

comparing mouldboard ploughing and chisel ploughing with no-tillage in a continuous

sorghum system and using a vented chamber covering a soil surface of 0.1 m2, obtained

CO2 values after tillage that ranged between 0.7 and 2.2 g CO2 m-2 h-1. However, in the

same experiment, using a canopy chamber covering 2.71 m2, the flux varied from 16 to

22 g CO2 m-2 h-1. Several authors have compared different CO2 measuring techniques

remarking about the variability of the values obtained among them (Rochette et al.

1992; Rayment, 2000; Pumpanen et al., 2004).

Reicosky and Lindstrom (1993) and Reicosky et al. (1997), concluded that the

increase in the CO2 flux after tillage is due to the physical release of the CO2 entrapped

and accumulated on soil pores from previous microbial activity. Rochette and Angers

(1999) used the term degassing to designate this increase in the CO2 emission

immediately following a tillage operation as a result from changes in the physical

characteristics of tilled soils. According to these authors, degassing implies a passive

loss of stored CO2 as it was previously pointed out by Reicosky et al. (1997).

On the other hand, Reicosky and Lindstrom (1993) and Prior et al. (2000) suggested

that initial CO2 flushes after tillage are related to the depth and degree of soil

disturbance. In our experiment, mouldboard ploughing was the tillage operation with

greatest degree of soil disturbance. Thus, in the sites where the CT treatment consisted

of a pass of mouldboard plough (AG, PN-CC and PN-CF), CO2 fluxes immediately

after tillage were the greatest (Figs. 6.2 and 6.3). However, in SV, where the CT and ST

treatments consisted of a pass with a subsoiler to a depth of 40 and 25 cm respectively,

CO2 fluxes immediately after tillage were very similar in both cases (Fig. 6.2). This fact

suggests that the lack of soil inversion after subsoiling reduces possible differences in

CO2 fluxes due to tillage depth.

The initial CO2 flux peak that followed tillage implementation considerably

decreased within the three hours following tillage operations, especially with CT (i.e.

from 13 to 3 g CO2 m-2 h-1 in AG 2003) (Figs. 6.2 and 6.3). Reicosky (1997), observed a

decrease from 122 g CO2 m-2 h-1 to 6 g CO2 m-2 h-1 within two hours after a pass with

moldboard plough.

Page 138: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

121Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Fig.

6.2

. Sor

t-ter

m s

oil C

O2 f

luxe

s fol

low

ing

tilla

ge o

pera

tions

(CT,

con

vent

iona

l till

age;

ST,

Sub

soil

tilla

ge; R

T, re

duce

d til

lage

; NT,

no-

tilla

ge) i

n

Nov

embe

r 200

3 an

d N

ovem

ber 2

004

in A

gram

unt (

AG

200

3 an

d A

G 2

004,

resp

ectiv

ely)

and

Jul

y 20

03 a

nd A

ugus

t 200

4 in

Sel

vane

ra (S

V 2

003

and

SV 2

005,

resp

ectiv

ely)

. Bar

s rep

rese

nt L

SD (P

<0.0

5) fo

r com

paris

on a

mon

g til

lage

trea

tmen

ts, w

here

sign

ifica

nt d

iffer

ence

s wer

e fo

und.

Hou

rs a

fter t

illage

0246810121416

-36

-24

-12

012

2436

4860

AG

200

3

CO2 flux (g m-2

h-1

) CO2 flux (g m-2

h-1

)

0123456 -36

-24

-12

012

2436

4860

AG

200

4

01234

-36

-24

-12

012

2436

4860

CO2 flux (g m-2

h-1

) SV

200

3

CT NT

RT

ST

012345678

-36

-24

-12

012

2436

4860

CO2 flux (g m-2

h-1

)

SV 2

004 Hou

rs a

fter t

illage

Page 139: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

122Capítulo 6

Fig.

6.3

. Sor

t-ter

m s

oil C

O2

fluxe

s fo

llow

ing

tilla

ge o

pera

tions

(C

T, c

onve

ntio

nal t

illag

e; R

T, r

educ

ed ti

llage

; NT,

no-

tilla

ge)

in N

ovem

ber

2003

and

2004

in P

eñaf

lor i

n a

cont

inuo

us b

arle

y sy

stem

(PN

-CC

200

3 an

d PN

-CC

200

4, re

spec

tivel

y) a

nd M

arch

200

3 an

d 20

05 in

Peñ

aflo

r in

a ba

rley-

fallo

w r

otat

ion

(PN

-CF

2003

and

PN

-CF

2005

, re

spec

tivel

y).

Bar

s re

pres

ent

LSD

(P<

0.05

) fo

r co

mpa

rison

am

ong

tilla

ge t

reat

men

ts,

whe

re

sign

ifica

nt d

iffer

ence

s wer

e fo

und.

0.0

0.1

0.2

0.3

0.4

0.5 -3

6-2

4-1

20

1224

3648

60

CO2 flux (g m-2

h-1

)

PN-C

F 20

03

0.0

0.5

1.0

1.5

2.0 -3

6-2

4-1

20

1224

3648

60

CO2 flux (g m-2

h-1

)

PN-C

F 20

05

Hou

rs a

fter t

illage

H

ours

afte

r tilla

ge

012345

-36

-24

-12

012

2436

4860

CO2 flux (g m-2

h-1

)

PN-C

C 2

004

CT NT

RT

012345

-36

-24

-12

012

2436

4860

CO2 flux (g m h) PN

-CC

200

3 -2-1

Page 140: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

123Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

3.2. Effect of tillage on mid-term soil CO2 fluxes

In PN-CC 2003 and PN-CF 2003, mid-term CO2 fluxes were also studied. During

the studied period (8 and 18 days in PN-CC 2003 and PN-CF 2003, respectively) CO2

fluxes kept steady except for rainfall events and secondary tillage operations (Fig. 6.4).

Thus, in PN-CF 2003 two CO2 peaks were observed. The first peak occurred 264 h after

primary tillage operations following a precipitation event of 22 mm. This rainfall event

induced increments of about 0.10-0.15 g CO2 m-2 h-1 in the three tillage treatments (CT,

RT and NT). A similar trend has been observed in other studies (Prior et al. 1997; Dao,

1998; Ellert and Janzen, 1999; Alvarez et al. 2001). Akinremi et al. (1999) suggested

that greater CO2 fluxes after a precipitation event is the result of two processes: firstly, a

physical release of the CO2 entrapped in the soil structure and displaced due to water

filling of soil pores and, secondly, a stimulation effect on soil microbial activity. The

second peak was observed under CT 408 h after tillage and it was the result of the soil

disturbance produced by a tractor mounted scrubber in order to break up clods. In PN-

CC 2003, only one peak of CO2 was observed 168 h after primary tillage in the CT and

RT plots due to a rotovator pass, producing twofold increments in the CO2 flux (Fig.

6.4). These findings agree with La Scala et al. (2005) who comparing different rotary

tillage implements also found a twofold increase after a rotary tillage as compared with

a non-disturbed soil.

Different CO2 fluxes between tilled treatments and NT were observed in PN-CF

2003 over the whole mid-term period (Fig. 6.4). In contrast, no differences among

treatments were found in PN-CC 2003 (Fig. 6.4). As both fields are adjacent and have

similar soil characteristics, it appears that this different trend was due to the effect of

different ploughing dates and climatic conditions after tillage. Thus, in PN-CC 2003,

CO2 fluxes were measured during November when monthly average air temperature

was 7 ºC whereas in PN-CF 2003 data was collected in March-April when the average

air temperature was 11 ºC. This greater air temperature in PN-CF together with the

rainfall event registered 264 h after tillage created better conditions for soil microbial

activity in the tilled treatments (CT and RT) compared to PN-CC. Thus, differences in

climatic conditions after tillage have a strong influence on SOM decomposition and,

therefore, on mid-term soil CO2 emissions (Rochette and Angers, 1999).

Page 141: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

124Capítulo 6

0

1

2

3

4

5

-48 0 48 96 144 192 240

PN-CC 2003RT NT

CT

C

O2 f

lux

(g m

-2 h

-1)

0.0

0.1

0.2

0.3

0.4

0.5

-48 0 48 96 144 192 240 288 336 384 432 480

PN-CF 2003

Hours after tillage

CO

2 flu

x (g

m-2

h-1

)

Fig. 6.4. Mid-term soil CO2 fluxes in Peñaflor following tillage operations (CT, conventional

tillage; RT, reduced tillage; NT, no-tillage) in November 2003 in a continuous barley cropping

system (PN-CC 2003) and March 2003 in a barley-fallow rotation (PN-CF 2003). Bars

represent LSD (P<0.05) for comparison among tillage treatments, where significant differences

were found.

3.3. Influence of soil temperature and soil water content on short-term soil CO2 fluxes

The lowest soil temperatures were observed at the AG and PN-CC fields since

tillage was implemented in November. Soil temperature at 5 cm depth ranged from 3 to

12ºC and from 6 to 10 ºC at AG and PN-CC, respectively (Fig. 6.5). However, the

greatest soil temperature was measured at SV, during summer, with peak temperatures

of 30 ºC (Fig. 6.5).

Page 142: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

125Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

The lowest soil water content was observed in SV 2003 with values ranging from

0.03 to 0.05 g g-1 (Fig. 6.6). The greatest water content was measured in AG 2003 with

values close to 0.30 g g-1. In PN-CC and PN-CF, a slightly decrease in soil water

content in the 24 h following tillage was observed in the CT and RT plots (Fig. 6.6).

This finding is in agreement with Moret et al. (2006) who working on the same

experimental plots, observed a decreased in soil water content in the CT and RT

treatments just after tillage due to an increase in soil water evaporation. Likewise, in SV

and AG the greatest soil water content was observed in NT. In the same study area,

Lampurlanés et al. (2001) also observed greater water contents in NT and suggested that

better infiltration rates in NT promoted greater soil water content as compared with RT

and ST.

Table 6.3. Determination coefficients (R2) between soil CO2 fluxes and abiotic factors (soil

temperature and gravimetric water content) per each site (SV, Selvanera site; AG, Agramunt

site; PN-CC, Peñaflor site under continuous cropping and PN-CF, Peñaflor site under cereal-

fallow rotation) and tillage event.

SV AG PN-CC PN-CF Abiotic

factors 2003 2004 2003 2004 2003 2004 2003 2005

Soil

temperature 0.190 0.067 0.250* 0.170 0.100 0.230 0.002 0.012

Soil water

content 0.032 0.170 0.060 0.001 0.004 0.033 0.018 0.190

* R2 significant at 0.10 level of probability.

In general, results indicate that tillage operations had little impact on soil

temperature and soil water content. Differences among tillage treatments although small

kept steady during the whole measurement period (Figs. 6.5 and 6.6). Small changes in

surface soil temperature and water content after tillage operations have also been

observed by other authors in similar studies (Ellert and Janzen, 1999; Prior et al., 2004).

Prior at al., (2004), suggested that these small changes on soil water content and

temperature do little in helping to interpret differences in CO2 fluxes between tillage

treatments. In our study, no significant relationships between CO2 fluxes and soil

temperature and water content were found (Table 6.3). Only the linear regression for

AG 2003 was significant at the 0.10 level, where soil temperature explained 25% of the

variability in the CO2 fluxes (P <0.1).

Page 143: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

126Capítulo 6

3.4. Effect of site and tillage date on soil CO2 fluxes

Estimates of cumulative CO2 emissions for the first 48 h following each tillage event

were calculated using numerical integration (trapezoid rule). This method provides

values that may be used to compare emissions between years, sites and treatments.

However, long time between readings (e.g., 24 h) may be subject to error because it

ignores daily temporal trend (Reicosky, 1997).

Differences in CO2 fluxes between years for the same site are related with

differences in microbial activity prior to tillage implementation (Reicosky, 1997; Prior

et al., 2004). In the present study, these differences might have resulted from different

soil conditions (e.g., soil temperature and soil water content) prior to tillage. Thus, the

cumulative CO2 fluxes were threefold greater in CT for SV 2004 than for SV 2003

(Table 6.4). As tillage was implemented in summer, air temperature in both study

periods was high (>20ºC). However, the soil water content was different with 39 and 78

mm of water stored in the first 50 cm of the soil profile after harvest in 2003 and 2004,

respectively (data not shown). Therefore, better soil conditions for microbial activity in

2004 than in 2003 led to greater CO2 emissions. Likewise, in PN-CC cumulative CO2

emissions were greater in 2003 than in 2004 (Table 6.4). Although mean air temperature

from harvest to tillage was similar in both years (20 and 21ºC in 2003 and 2004,

respectively), the precipitation received was different (179 mm in 2003 vs. 101 mm in

2004). Greater soil water content during 2003 led to better optimal conditions for

microbial activity and, thus, to greater soil CO2 emissions.

Table 6.4. Cumulative CO2 emissions during the first 48 h following tillage (CT, conventional

tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage) at Selvanera (SV), Agramunt

(AG), Peñaflor continuous cropping (PN-CC) and Peñaflor barley-fallow rotation (PN-CF).

Cumulative CO2 emissions (g m-2) Site and measurement

period NT RT ST CT

SV 2003 37 - 72 78 SV 2004 140 - 273 287

AG 2003 48 78 82 97 AG 2004 24 31 34 45

PN-CC 2003 34 46 - 58 PN-CC 2004 12 21 - 27

PN-CF 2003 4 6 - 10 PN-CF 2005 6 10 - 16

Page 144: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

127Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Fig.

6.5

. Soi

l tem

pera

ture

at 5

cm

dep

th d

urin

g th

e pe

riods

of s

hort-

term

CO

2 em

issi

ons m

easu

rem

ents

und

er d

iffer

ent t

illag

e tre

atm

ents

(CT,

conv

entio

nal t

illag

e; S

T, s

ubso

il til

lage

; RT,

redu

ced

tilla

ge; N

T, n

o-til

lage

) at A

gram

unt (

AG

200

3 an

d 20

04),

Selv

aner

a (S

V 2

003

and

SV

2004

) an

d Pe

ñaflo

r in

a c

ontin

uous

bar

ley

crop

ping

sys

tem

(PN

-CC

200

3 an

d PN

-CC

200

4) a

nd in

a b

arle

y-fa

llow

rot

atio

n (P

N-C

F 20

03

and

PN-C

F 20

05).

Bar

s rep

rese

nt L

SD (P

<0.0

5) fo

r com

paris

on a

mon

g til

lage

trea

tmen

ts, w

here

sign

ifica

nt d

iffer

ence

s wer

e fo

und.

CT NT

RT

ST

05101520253035

-36

-24

-12

012

2436

4860

SV 2

004

05101520253035

-36

-24

-12

012

2436

4860

SV 2

003

Soil temperature (0-5 cm), ºC

Hou

rs a

fter t

illag

e

Hou

rs a

fter t

illag

e

024681012141618

-36

-24

-12

012

2436

4860

PN-C

F 20

05

024681012141618

-36

-24

-12

012

2436

4860

AG 2

004

024681012141618

-36

-24

-12

012

2436

4860

PN-C

C 2

004

Soil temperature (0-5 cm), ºC

024681012141618

-36

-24

-12

012

2436

4860

AG 2

003

024681012141618

-36

-24

-12

012

2436

4860

PN-C

C 2

003

024681012141618

-36

-24

-12

012

2436

4860

PN-C

F 20

03

Soil temperature (0-5 cm), ºC

Hou

rs a

fter t

illag

e

Page 145: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

128Capítulo 6

Fig.

6.6

. Gra

vim

etric

soi

l wat

er c

onte

nt in

the

top

5 cm

soi

l lay

er u

nder

diff

eren

t till

age

treat

men

ts (

CT,

con

vent

iona

l till

age;

ST,

sub

soil

tilla

ge; R

T, re

duce

d til

lage

; NT,

no-

tilla

ge) d

urin

g th

e st

udy

perio

ds a

t Agr

amun

t (A

G 2

003

and

2004

), Se

lvan

era

(SV

200

3 an

d SV

200

4)

and

Peña

flor

in a

con

tinuo

us c

ropp

ing

syst

em (

PN-C

C 2

003

and

PN-C

C 2

004)

and

in a

bar

ley-

fallo

w r

otat

ion

(PN

-CF

2003

and

PN

-CF

2005

). B

ars r

epre

sent

LSD

(P<

0.05

) for

com

paris

on a

mon

g til

lage

trea

tmen

ts, w

here

sign

ifica

nt d

iffer

ence

s wer

e fo

und.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

SV 2

004

Soil water content (0-5 cm), g g-1

Hou

rs a

fter t

illag

e

CTNT

RT

ST

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

SV 2

003

Hou

rs a

fter t

illag

e

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

PN-C

F 20

05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

PN-C

C 2

004

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

AG 2

004

Soil water content (0-5 cm), g g-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

AG 2

003

PN-C

C 2

003

0.00

0.05

0.10

0.15

0.20

0.25

0.30

-36

-24

-12

012

2436

4860

Hou

rs a

fter t

illag

e

Soil water content (0-5 cm), g g

PN-C

F 20

03

-1

Page 146: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

129Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Different soil CO2 emissions among sites were the result of both different amount of

CO2 stored within soil pores at tillage and different tillage operations. The CO2 stored in

soil pores is affected by soil characteristics, soil microclimatic conditions from harvest

to tillage, the amount and quality of crop residues and the time elapsed between crop

harvest and tillage. Thus, the lowest cumulative CO2 emissions found in PN-CF was the

result of a low residue production (1000-2000 kg ha-1), low SOC content (Table 6.1),

low soil temperatures prior to tillage and the long time elapsed from harvest to tillage

(7-8 months).

4. Summary and conclusions

Tillage caused a sharp increase in soil CO2 emissions. This was a relatively short

process lasting less than three hours since tillage implementation. The amount of CO2

emitted immediately after tillage was proportional to the degree of soil disturbance

produced. Thus, mouldboard ploughing caused a greater CO2 flux than chisel ploughing

at Agramunt (AG) and Peñaflor (PN-CC and PN-CF). However, at SV, CO2 fluxes were

similar between CT and ST due to the lack of soil inversion in these treatments. At all

sites, soil CO2 emissions under NT were low and kept steady during the whole study

periods. Microclimatic soil conditions (soil temperature and soil water content) had little

impact on soil CO2 emissions during tillage. However, in the mid-term, rainfall events

had a stronger influence and produced increases in the amount of CO2 released from soil

surface in all the tillage treatments studied. Although microbial activity was not

measured in this experiment, we hypothesised that differences in the cumulative amount

of CO2 emitted among experimental fields and years were generated by different

conditions for soil microbial activity from harvest to tillage. In our semiarid areas,

annual rainfall variability is a major characteristic that has a strong influence on soil

microbial activity and, consequently, on differences in CO2 stored within soil pores

between seasons.

In semiarid dryland agroecosystems of the Ebro river valley, adoption of no-tillage

(NT) led to a reduction in soil CO2 emissions as compared to other soil tillage systems

(e.g., mouldboard ploughing, chiselling, subsoiling). In these areas, the absence of soil

disruption under NT has a potential benefit to mitigate greenhouse gases emissions

compared with other tillage treatments in which soil is disturbed. We believe that

further research is needed to better assess the impact of this decrease in CO2 emissions

with the adoption of NT practices.

Page 147: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

130Capítulo 6

References

Akinremi, O.O., McGinn, S.M., McLean, H.D.J. 1999. Effects of soil temperature and

moisture on soil respiration in barley and fallow plots. Can. J. Soil Sci. 79, 5-13.

Alvarez, R., Alvarez, C.R., Lorenzo, G. 2001. Carbon dioxide fluxes following tillage

from a mollisol in the Argentine Rolling Pampa. Eur. J. Soil Biol. 37, 161-166.

Bauer, A., Black, A.L. 1994. Quantification of the effect of soil organic matter content

on soil productivity. Soil Sci. Soc Am. J. 58, 185-193.

Dao, T.H. 1998. Tillage and crop residue effects on carbon dioxide evolution and

carbon storage in a Paleustoll. Soil Sci. Soc. Am. J. 62, 250-256.

Doran, J.W. 1980. Soil microbial and biochemical changes associated with reduced

tillage. Soil Sci. Soc. Am. J. 44, 765-771.

Ellert, B.H., Janzen, H.H. 1999. Short-term influence of tillage on CO2 fluxes from a

semi-arid soil on the Canadian Prairies. Soil Till. Res. 50, 21-32.

Kessavalou, A., Doran, J.W., Mosier, A.R., Drijber, R.A. 1998. Greenhouse gas fluxes

following tillage and wetting in a wheat-fallow cropping system. J. Environ. Qual.

27, 1105-1116.

Lal, R. 2004. Soil carbon sequestration to mitigate climate change. Geoderma. 123, 1-

22.

Lampurlanés, J., Angás, P., Cantero-Martínez, C. 2001. Root growth, soil water content,

and yield of barley under different tillage systems on two soils in semiarid

conditions. Field Crops Res. 69, 27-40.

La Scala Jr., N., Lopes, A., Panosso, A.R., Camara, F.T., Pereira, G.T. 2005. Soil CO2

efflux following rotary tillage of a tropical soil. Soil Till Res. 84, 222-225.

Moret, D., Arrúe, J.L., López, M.V., Gracia, R. 2006. Influence of fallowing practices

on soil water and precipitation storage efficiency in semiarid Aragon (NE Spain).

Agric. Water Manage. 82, 161-176.

Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van

Noordwijk, M., Woomer, P.L. 1997. Agricultural soils as a sink to mitigate CO2

emissions. Soil Use Manage. 13, 230-244.

Paustian, K., Cole, C.V., Sauerbeck, D., Sampson, N. 1998. CO2 mitigation by

agriculture: an overview. Climatic Change 40, 135-162.

Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones O.R., Lyon, D.J., Tanaka, D.L.

1998. Reduced tillage and increasing cropping intensity in the Great Plains

conserves soil C. Soil Till. Res. 47, 207-218.

Page 148: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

131Soil carbon Dioxide Fluxes following Tillage in Semiarid Mediterranean Agroecosystems

Prior, S.A., Raper, R.L., Runion, G.B. 2004. Effect of implement on soil CO2 efflux:

fall vs. spring tillage. Trans. ASAE. 47, 367-373.

Prior, S.A., Reicosky, D.C., Reeves, D.W., Runion G.B., Raper R.L. 2000. Residue and

tillage effects on planting implement-induced short-term CO2 and water loss from

a loamy sand soil in Alabama. Soil Till. Res. 54, 197-199.

Prior, S.A., Rogers, H.H., Runion, G.B., Torbert, H.A., Reicosky, D.C. 1997. Carbon

dioxide-enriched agroecosystems: influence of tillage on short-term soil carbon

dioxide efflux. J. Environ. Qual. 26, 244-252.

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila,

A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J.C., Grünzweig,

J.M., Reth, S., Subke, J.A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W.,

Anthoni, P., Lindroth, A., Hari, P. 2004. Comparison of different chamber

techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 123, 159-176.

Rayment, M.B. 2000. Closed chamber systems underestimate soil CO2 efflux. Eur. J.

Soil Sci. 51, 107-110.

Rayment, M.B., Jarvis, P.G. 1997. An improved open chamber system for measuring

soil CO2 effluxes in the field. J. Geophys. Res. 102 (D24), 28779-28784.

Reicosky, D.C. 1997. Tillage methods and carbon dioxide loss: fall versus spring

tillage. P. 99-111. In: Lal R., Kimble J. and Follet R. (ed.). Carbon sequestration

in soil. Intl. Symp. Columbus, OH. CRC Press, Boca Raton, Florida, USA.

Reicosky, D.C., Dugas, W.A., Torbert, H.A. 1997. Tillage-induced soil carbon dioxide

loss from different cropping systems. Soil Till. Res. 41, 105-118.

Reicosky, D.C., Kemper, W.D., Langdale, G.W., Douglas, C.L., Rasmussen, P.E. 1995.

Soil organic matter changes resulting from tillage and biomass production. J. Soil

Water Conserv. 50, 253-261.

Reicosky, D.C., Lindstrom M.J. 1993. Fall tillage method: effect on short-term carbon

dioxide flux from soil. Agron. J. 85, 1237-1243.

Roberts, W.P., Chan, K.Y. 1990. Tillage-induced increases in carbon dioxide loss from

soil. Soil Till. Res. 17, 143-151.

Rochette, P., Angers, D.A. 1999. Soil surface carbon dioxide fluxes induced by spring,

summer, and fall moldboard plowing in a sandy loam. Soil Sci. Soc. Am. J. 63,

621-628.

Page 149: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

132Capítulo 6

Rochette, P., Gregorich, E.G., Desjardins, R.L. 1992. Comparison of static and dynamic

closed chambers for measurement of soil respiration under field conditions. Can.

J. Soil Sci. 72, 605-609.

Rolston, D.E. 1986. Gas diffusivity. P. 1089-1119. In: Klute, A. (ed.), Methods of Soil

Analysis, Part 1, 2nd Edition, Agronomy, Vol. 9. Soil Science Society of America,

Madison, WI, USA.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC.

USA.

Schlesinger, W.H. 2000. Carbon sequestration in soils: some cautions amidst optimism.

Agric. Ecos. Environ. 82, 121-127.

Six, J., Elliot, E.T., Paustian, K. 1999. Aggregate and soil organic matter dynamics

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358.

Six, J., Elliot, E.T., Paustian, K., Doran, J.W. 1998. Aggregation and soil organic matter

accumulation in cultivated and native grassland soils. Soil Sci. Soc. Am. J. 62,

1367-1377.

Soil Survey Staff. 1975. Soil taxonomy, a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook 436. US Gov. Print.

Office, Washington, DC.

Page 150: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 7

Long-Term Tillage Effects on Soil Carbon Dioxide

Fluxes in Semiarid Mediterranean Conditions

Page 151: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

135

Long-Term Tillage Effects on Soil Carbon Dioxide Fluxes in Semiarid

Mediterranean Conditions

ABSTRACT

Soil organic carbon (SOC) mineralization has contributed to CO2 emissions from

soils to the atmosphere and to the global climate change. We hypothesized that in

semiarid agroecosystems of the Mediterranean region a shift from the traditional

management system (including conventional tillage, CT, and the cereal-fallow

rotation, CF) to a more conservative system, including no-tillage (NT) and

continuous cropping (CC) could reduce soil C losses as CO2 emissions during the

cropping season. Thus, in this study, we studied the effects of tillage and cropping

systems on soil CO2 emissions during three cropping seasons in three different sites

of the Ebro river valley (NE Spain). At the same time, soil C balances were made

in order to establish the possible soil C gain or loss under different tillage and

cropping systems. Considering all the sites and cropping seasons, CT emitted a

30% higher soil CO2 than NT and a 5% higher than RT. The most part of the

tillage treatments, especially CT, led to a negative soil C balance, indicating a loss

of soil C. Although, lower CO2 emissions were measured under the CF rotation,

more than 5 times lower soil C losses were estimated under the CC system. In

semiarid dryland agroecosystems of the Ebro valley, alternative agricultural

management practices (NT and cropping systems intensification) led to a decrease

in soil C losses.

Page 152: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

136

Capítulo 7

1. Introduction

Estimates of the total soil organic C (SOC) of the world is close to 1500 Pg

(Eswaran et al. 1993; Batjes, 1996) and about 170 Pg is contained in agricultural soils.

Paustian et al. (1997) estimated a C stock of about 170 Pg in cultivated lands. Historical

SOC losses from agricultural soils have been estimated in about 54 Pg of C (Paustian et

al., 1998). These C losses have environmental and productivity effects on

agroecosystems. Thus, the mineralization of SOC has contributed to CO2 emissions

from soils to the atmosphere and to the global climate change (Paustian et al. 2000). In

addition, the depletion of SOC has been associated with a loss of fertility and thus with

a loss of productivity of the agroecosystems (Bauer and Black, 1994).

Soil CO2 emissions respond mainly to a concentration gradient from locations with

higher to lower CO2 concentration. This process may be accelerated or restrained

depending on soil micrometeorological conditions and/or soil management practices.

Soil temperature and soil water content have been identified as the two main factors

affecting soil CO2 emissions. Some studies have reported relationships between soil

CO2 emissions and soil temperature and water content (Franzluebbers et al., 1995).

However, several studies have concluded that soil temperature is the main variable

affecting soil CO2 emissions and that soil water content has little or not effect (Hendrix

et al., 1988; Bajracharya et al., 2000; Frank et al., 2006).

Soil management practices, especially tillage, modify soil profile properties and thus

soil CO2 emissions. Tillage, especially mouldboard ploughing, stimulates soil microbial

activity due to greater soil aeration than conservative tillage systems such as reduced

tillage or, particularly, no-tillage in which soil is not altered (Angers et al., 1993). At the

same time, the breakdown of soil macroaggregates under intensive tillage systems leads

to an increase on soil CO2 emissions. Six et al. (1999) observed faster macroaggregate

turnover under mouldboard ploughing compared with no-tillage and, thus, a greater

release of labile organic matter previously microbial-protected within soil

macroaggregates.

Cropping intensification may also influence soil CO2 emissions. Jacinthe et al.

(2002) observed greater soil CO2 emissions when greater wheat residue was applied on

soil surface probably due to a change in soil thermal properties. Curtin et al. (2000), in

semiarid conditions, found greater CO2 emissions under a continuous wheat compared

with the cropped phase of a wheat-fallow rotation.

Page 153: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

137Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

SOC levels are governed by the C balance between C inputs and C outputs (Paustian

et al., 2000). Microbial decomposition is the main variable controlling C outputs.

However, C inputs are controlled by three different variables: C-crop residue derived,

C-root derived and C-rhizodeposition derived or C originated from root exudations,

desquamation of cells and radicular hairs (Alvarez et al., 1995).

Several authors have studied the role of soil tillage practices on soil CO2 emissions

and, in addition, on the soil C budget (Alvarez et al., 1995; Franzluebbers, et al., 1995;

Kessavalou, et al. 1998). Reducing tillage intensity may lead to a decrease of SOC

losses either by enhancing C inputs returned to the field (Alvarez et al., 1995) or, in

contrast, by decreasing CO2 emissions (Kessavalou, et al. 1998; Curtin et al., 2000). At

the same time, intensification of cropping systems may also lead to a decrease of soil C

losses. In the semiarid regions of the Canadian prairies, the suppression of long-

fallowing in the rotation and the consequent switch from a cereal-fallow rotation to a

continuous cereal system increased crop residues returned to the field and, thus, C

inputs (Curtin et al. 2000).

In semiarid agroecosystems of the Ebro valley (NE Spain) the cereal-fallow rotation

is a widespread cropping management system aimed to increase total water stored. In

this area, intensive tillage with the use of mouldboard ploughing has also been a

common traditional practice. Therefore, the use of these management practices during

decades has led to an important loss of SOC levels. Information about soil CO2

emissions in the Ebro river valley region is scarce. There are some studies comparing

tillage systems in other Spanish areas with similar conditions (Sánchez et al., 2002,

2003). However, in these studies, there is not information about C inputs and therefore,

the possible C gain or loss under different management practices could not be evaluated.

The objectives of the present study were to (i) determine the effects of tillage and

cropping systems on soil CO2 emissions, (ii) evaluate the influence of climatic factors

on soil CO2 emissions and (iii) estimate SOC balances determining the main factors that

influence the possible soil C gain or loss. This study was carried out during three

consecutive cropping seasons in three long-term experiments located along the Ebro

river valley.

Page 154: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

138

Capítulo 7

2. Materials and methods

This study was conducted during three cropping seasons, from November 2002 to

June 2005, at three experimental sites located in the semiarid Ebro valley region (NE

Spain). Sites, from higher to lower annual precipitation, were: Selvanera (475 mm),

Agramunt (430 mm) and Peñaflor (390 mm). Selected climate and soil characteristics

are shown in Table 7.1. In Selvanera (SV) the cropping system consisted of a wheat-

barley-wheat-rapeseed rotation with four tillage treatments: conventional tillage (CT),

subsoil tillage (ST), reduced tillage (RT) and no-tillage (NT). The CT and ST treatments

consisted of a subsoiler tilling at 50 cm and 25 cm depth, respectively in August

followed in both cases by a pass with a field cultivator to a depth of 15 cm in October

before sowing. The RT treatment was implemented in October with only one pass of

cultivator to a depth of 15 cm. In Agramunt, the cropping system consisted of a barley-

wheat rotation with four tillage treatments: conventional tillage (CT), subsoil tillage

(ST), reduced tillage (RT) and no-tillage (NT). The CT treatment consisted of a pass of

mouldboard ploughing to a depth of 25-30 cm depth in October followed by a pass with

a field cultivator to a depth of 15 cm. The ST treatment consisted of a subsoiler tilling at

25 cm depth in October followed by a field cultivator to 15 cm depth. The RT treatment

was implemented with one or two passes of cultivator to 15 cm depth in October. In

Peñaflor (PN), two cropping systems were compared, a continuous barley cropping

system (PN-CC) and a barley-fallow rotation (PN-CF1 and PN-CF2). In the barley-

fallow rotation, both phases of the rotation were represented at the field every season.

Three tillage systems were compared at both cropping systems in the PN site:

conventional tillage (CT), reduced tillage (RT) and no-tillage (NT). The CT treatment

consisted of a pass with a mouldboard plough to a depth of 30 to 35 cm plus a pass with

a tractor-mounted scrubber as a traditional practice to break down large clods. The RT

plots were chisel ploughed to a depth of 25 to 30 cm. In the CT and RT plots of the PN-

CC system, primary tillage was implemented every season in October followed by a

pass of a sweep cultivator to a depth of 10-15 cm as secondary tillage. However, in the

PN-CF system, primary tillage was implemented in March every two seasons, during

the fallow phase of the rotation and secondary tillage, consisting of a cultivator pass to a

depth of 15-20 cm in May. At the three experimental sites, in the NT treatment no

tillage operations were done and for sowing a direct drill planter was used. In this

treatment, soil was free of weeds spraying total herbicide (glyphosate).

Page 155: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

139Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

At all sites, tillage treatments were arranged in a randomized complete block design

with three replicates in SV, PN-CC and PN-CF and with four replicates in AG. Plot size

was 50x7 m at SV, 50x9 m at AG and 33x10 m at PN-CC and PN-CF.

2.1. Experimental measurements

2.1.1. Soil CO2 fluxes (C outputs)

After sowing, soil CO2 emissions were measured every 15 days from December

2002 to June 2005 at the PN site. At the SV and AG sites, measurements were taken

once per month from December 2003 to June 2005 with the exception of the short

fallow period (July-November 2004) when no measurements were made. Three

measurements per plot were taken using an open chamber system (model CFX-1,

PPSystems, Hertfordshire, London) connected to an infrared gas analyzer (model EGM-

4, PPSystems, Hertfordshire, London). The chamber, which is similar to that described

by Rayment and Jarvis (1997), has a cylindrical diameter of 0.21 m, covering a soil

surface of 0.035 m2. In this open system, soil CO2 flux was calculated by the difference

in CO2 concentration between air entering and leaving the chamber, ensuring that

atmospheric pressure fluctuations were transferred through the soil surface. The

chamber was inserted 3 cm into the soil, to avoid CO2 leaks from inside the chamber to

the atmosphere. The flux value was taken 3 minutes after the chamber was inserted into

the soil in order to avoid possible unrealistic values caused by the disturbance produced

after placing the chamber into the soil (Pumpanen et al., 2004).

Daily measurements started at 10:00 am and finished around 12:00 am and were

assumed to represent the average flux of the day (Kessavalou et al., 1998). Thus,

considering this value as the daily average flux, cumulative soil CO2 emissions

calculated using numerical integration (trapezoid rule) were used to estimate total CO2

emissions during the whole season. Although cumulative CO2 fluxes calculated by this

method may be subject to error because long time between sampling dates (Reicosky,

1997), the methods allows the comparison between sites, cropping systems and tillage

treatments and provides a single value of CO2 emitted that can be easily used in the C

balance as the total C-CO2 loss or C output.

2.1.2. Weather, soil temperature and soil moisture content

Daily air temperature and precipitation observations were made at the experimental

sites using automated weather stations.

Page 156: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

140

Capítulo 7

Soil temperature was measured with a hand-held probe (model STP-1, PPSystems,

Hertfordshire, London) attached to the soil chamber. The probe was inserted 5 cm into

the soil 5 cm away from the edge of the chamber. A soil temperature reading was taken

at the same time as the soil CO2 flux was recorded.

With each CO2 measurement a soil surface sample was collected to a depth of 5 cm

to determine the gravimetric soil water content by oven drying the soil at 105 ºC.

2.1.3. C inputs

In order to estimate the soil C balance for the different tillage treatments, C inputs

were computed during three seasons at the PN site (2002-2003, 2003-2004 and 2004-

2005) and during two seasons at SV and AG (2003-2004 and 2004-2005). The C inputs

consisted of crop straw, dry root biomass at maturity and C originated from the root

system due to exudations, cell desquamation and radicular hairs (rhizodepositions). This

rhizodeposition-derived C, which was not directly measured in this study, was estimated

according to Keith et al. (1986) who proposed that this C fraction is similar to the root

residue C at harvest. After harvest, four soil cores (8 cm diameter x 30 cm depth) per

plot (two in the row and the other two in the inter-row) were collected from the top 30

cm of soil in order to measure the root biomass. Once at the laboratory, the soil cores

were kept at 4 ºC until root-soil separation. Soil was washed over a 0.5 mm sieve

specifically built up for this study in order to remove roots (Böhm, 1979). Roots

separated from each soil core were transferred to an aluminium pan and weighed after

oven-driying during 48 h at 65 ºC.

Crop straw was measured prior to harvest. Crop plants from four 0.5 m long rows

per plot were hand-harvested. The grain was removed from the plant and the straw was

oven-dried during 48 h at 65 ºC and weighed. Samples from dry straw and roots were

ground and analyzed for C content.

Page 157: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

141Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Table 7.1. Site and soil (Ap horizon) characteristics.

Study sites Climate and

soil characteristics Selvanera Agramunt Peñaflor

Latitute 41º 50’N 41º 48’N 41º 44’N Longitude 1º 17’E 1º 07’E 0º 46’W Elevation (m) 475 330 270 Mean annual air temperature (ºC) 13.9 14.2 14.5 Mean annual precipitation (mm) 475 430 390

Soil classification ¶ Xerocrept fluventic

Xerofluvent typic

Xerollic Calciorthid

Ap horizon depth (cm) 37 28 30 pH (H2O, 1:2.5) 8.3 8.5 8.23 EC1:5 (dS m-1) 0.16 0.15 0.29

Water retention (g g-1) -33 kPa 0.16 0.16 0.20 -1500 kPa 0.04 0.05 0.11

Particle size distribution (%) Sand (2000-50 µm) 36.5 30.1 32.4 Silt (50-2 µm) 46.4 51.9 45.5 Clay (< 2 µm) 17.1 17.9 22.2

SOC (0-20 cm; g m-2)

No-tillage (NT) 2942 3111 2743§ 2306‡

Reduced tillage (RT) – 2876 2285 2154 Subsoil tillage (ST) 2947 2592 – – Conventional tillage (CT) 2869 2541 2278 2021 ¶ USDA classification (Soil Survey Staff, 1975). § SOC in PN-CC (Peñaflor site under continuous cropping system). ‡ SOC in PN-CF (Peñaflor site under cereal-fallow rotation)

2.2. Statistical analyses

Statistical analyses of data were performed using the SAS (SAS Institute, 1990).

Analyses of variance (ANOVA) were applied to compare tillage treatments. Differences

between means were tested with Duncan’s multiple range test. Regressions analyses

were used to determine the relationship between soil CO2 fluxes and soil temperature

and soil water content.

Page 158: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

142

Capítulo 7

3. Results and discussion

3.1. Tillage effects on carbon dioxide fluxes

Carbon dioxide fluxes showed a similar annual trend for all the sites and cropping

systems, with low emissions during winter months and an increase in CO2 emissions in

spring and early summer. As an example, Figure 7.1 shows the long-term soil CO2

fluxes measured at the Peñaflor site. Ninety percent of the fluxes ranged from 0.01 g

CO2 m-2 h-1 to 2 g CO2 m-2 h-1 (Fig. 7.1). These values were within the range found in

other semiarid areas (Kessavalou et al., 1998; Curtin et al., 2000; Sánchez et al. 2003).

Fluxes greater than 2 g CO2 m-2 h-1 were scarce.

Rochette et al. (1991) studied the temporal variability of soil respiration and

observed that the greatest soil CO2 fluxes corresponded with the periods of higher soil

temperature and plant growth. In our experiment, for example, at PN-CC from January

to April 2003 soil temperature at 5 cm depth increased from 4 to 11 ºC and CO2 fluxes

increased from 0.06 to 0.26 g CO2 m-2 h-1 (average of the three tillage treatments). We

suggest that the increase in soil CO2 fluxes observed in spring was a consequence of

three factors. First, the effect of root respiration that increases due to the growth of the

crop in spring (Buyanovsky et al., 1986). In our study, as in other experiments using the

surface chamber method to measure soil CO2 fluxes (Alvarez, et al., 1995; Kessavalou

et al., 1998), we could not separate between heterotrophic-derived CO2 and root-derived

CO2. The second factor might be the increase of microbial activity in spring due to the

presence of easily decomposable root-derived organic compounds (Swinnen et al.

1995). Thirdly, several rainfall events during spring induced an increase in soil CO2

emissions.

At Peñaflor (PN-CC, PN-CF1 and PN-CF2) a total rainfall of 132 and 93 mm was

recorded during March-May 2004 and May-June 2005, respectively. These two periods

coincided with peaks of soil CO2 emissions (Fig. 7.1). Rainfall produced a displacement

of the CO2-rich soil atmosphere by water filling the soil pores followed by an increase

in microbial activity due to favourable micrometeorological soil conditions for

microbial decomposition (Akinremi et al., 1999; Emmerich, 2002).

Page 159: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

143Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Fig. 7.1. Long-term soil CO2 fluxes as influenced by tillage (CT, conventional tillage; RT,

reduced tillage; NT, no-tillage) and cropping system (PN-CC, continuous cropping barley; PN-

CF1 and PN-CF2 barley-fallow rotations) from November 2002 to June 2005 at the Peñaflor

site. Bars indicate LSD (P<0.05) for comparisons among tillage treatments at the same date

where significant differences were found.

Barley Barley Barley Short fallow

Short fallow

0.0

0.5

1.0

1.5

0

2.5

3.0

Nov

-02

Jan-

03

Mar

-03

May

-03

Jul-0

3

Sep

-03

Nov

-03

Jan-

04

Mar

-04

May

-04

Jul-0

4

Sep

-04

Nov

-04

Jan-

05

Mar

-05

May

-05

RTNT CTC

O2 f

lux

(g m

-2 h

-1)

PN-CC2.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nov

-02

Jan-

03

Mar

-03

May

-03

Jul-0

3

Sep

-03

Nov

-03

Jan-

04

Mar

-04

May

-04

Jul-0

4

Sep

-04

Nov

-04

Jan-

05

Mar

-05

May

-05

PN-CF1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Nov

-02

an-0

3

Mar

-03

May

-03

Jul-0

3

Sep

-03

Nov

-03

Jan-

04

Mar

-04

May

-04

Jul-0

4

Sep

-04

Nov

-04

Jan-

05

Mar

-05

May

-05

PN-CF2

Fallow Barley Fallow

J

CO

2 flu

x (g

m-2

h-1

) C

O2 f

lux

(g m

-2 h

-1)

Fallow Barley Barley

Page 160: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

144

Capítulo 7

With respect soil tillage effect, during all the study period, the lowest soil CO2 flux

was observed under NT (Fig. 7.1). On average, CT plots emitted a 22%, 11% and 25%

more CO2 than NT plots at PN-CC, SV and AG, respectively (Table 7.2). These lower

CO2 fluxes under NT than under CT were mainly the result of differences in microbial

activity and/or root respiration. Likewise, during the fallow phase of the cereal-fallow

rotation in PN-CF1 and PN-CF2 it was measured lower CO2 fluxes under NT than

under CT. Since during this fallow phase no crop was grown in the field, root

respiration was not accounted for and the CO2 fluxes observed were only due to

microbial activity. In semiarid Canada, Curtin et al. (2000) concluded that slower

decomposition rates in NT compared with CT lead to lower CO2 fluxes under NT.

Tillage reduces aggregate size, exposing protected aggregate C to microbial attack and

stimulating oxidation of soil C (Peterson et al., 1998).

Cumulative soil CO2 emissions over the study period at the experimental sites for

their respective cropping systems and tillage are presented in Table 7.2. Cumulative soil

CO2 emissions were in the range given by other authors in similar conditions

(Kessavalou et al., 1998; Curtin et al., 2000). The exception occurred during the 2003-

2004 season with CO2 fluxes exceptionally high (e.g. 10046 and 9386 g CO2 m-2 in ST

and CT, respectively in the SV site) (Table 7.2). Especially favourable climatic

conditions for crop growth during the 2002-2003 season led to a great crop residue

production (about 4000 kg ha-1 of straw). This exceptional amount of crop residues in

our semiarid conditions, together with an exceptional wet 2003-2004 growing season

(e.g. 257 mm of seasonal rainfall), created optimum conditions for soil microbial

decomposition and thus high soil CO2 emissions.

During the 4-month fallow period comprised between crop harvest and the

following crop sown it was observed an important lost of CO2 (Table 7.2). From July to

November 2003 at PN-CC it was measured a CO2 loss of 2097 g m-2 CO2 (average of

the three tillage treatments) whereas during the previous cropping season (from

November 2002 to July 2003) it was only measured 1270 g m-2 CO2 (average of the

three tillage treatments). Buyanovsky et al. (1987), comparing fluxes between a winter

wheat and a prairie system, concluded that the sharp increase in soil CO2 emissions

observed after crop harvest resulted from high soil and air temperatures together with

the decomposition of the root system from the previous crop.

Page 161: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

145Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Table 7.2. Cumulative soil CO2 emissions as affected by tillage (CT, conventional tillage; ST,

subsoil tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to June 2005 at

Peñaflor site (PN-CC, continuous barley; PN-CF1 and PN-CF2, barley-fallow rotation) and

from November 2003 to June 2005 at Selvanera (SV) and Agramunt (AG).

Cumulative CO2 (g CO2 m-2) Site Time period NT RT ST CT

SV Wheat November 2003- June 2004 8176 8643 10046 9386 Rapeseed November 2004- June 2005 1671 2006 1603 1802 AG Barley November 2003- June 2004 4417 4709 4917 5366 Wheat November 2004- June 2005 1557 1595 1821 1800 PN-CC Barley November 2002- June 2003 1141 1313 - 1355 Fallow July-November 2003 1636 2329 - 2326 Barley December 2003- June 2004 5424 6697 - 6515 Fallow July-November 2004 2329 2225 - 2515 Barley December 2004- June 2005 1899 2649 - 2744 PN-CF1 Fallow November 2002- June 2003 537 559 - 639 July-November 2003 1521 2212 2363 Barley December 2003- June 2004 3784 5062 - 5180 Fallow July-November 2004 1420 1917 - 2119 December 2004- June 2005 1226 1876 - 2451 PN-CF2 Barley November 2002- June 2003 972 1041 - 1084 Fallow July- November 2003 1603 1314 - 1508 December 2003- June 2005 2246 2644 - 3126 July-November 2004 896 1369 - 1329 Barley December 2004- June 2005 1999 2757 - 2506

3.2. Cropping system effects on carbon dioxide fluxes

At Peñaflor during the three growing seasons and for the three tillage systems,

greater CO2 emissions were observed under continuous barley (PN-CC) than under the

barley-fallow rotation (PN-CF1 and PN-CF2) (Table 7.2). For example, from November

2002 to June 2003, whereas the total CO2 emitted (average of the three tillage systems)

during the crop phase in PN-CC was 1270 g CO2 m-2 in the crop phase of the barley-

fallow rotation (PN-CF2) the total emission was 1033 g CO2 m-2 (average of the three

tillage systems) (Table 7.2). However, for the same period (November 2002 to June

2003), the total CO2 emitted (average of the three tillage systems) during the fallow

phase of the rotation (PN-CF1) was 578 g CO2 m-2 (Table 7.2). During the two other

seasons (2003-2004 and 2004-2005) it was observed the same trend with lower CO2

fluxes observed in the fallow phase compared with the crop phase (Table 7.2). These

results are in agreement with findings by Curtin et al. (2000), who reported greater CO2

Page 162: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

146

Capítulo 7

fluxes in continuous wheat than in a wheat-fallow rotation. In our study, the absence of

root respiration in the fallow plots compared to cropped plots caused the lower CO2

fluxes measured in the fallow phase of the barley-fallow rotation.

The semiarid agroecosystems of the Ebro valley are characterized by a low annual

residue input (1000-2000 kg ha-1). López et al. (2005) observed an 80-90% reduction of

the crop residue cover during the fallow phase of the barley-fallow rotation. In our

experiment, most of the residue from the preceding crop could have decomposed during

this phase. Therefore, the amount of residues on the soil surface during the crop of the

barley-fallow rotation is insignificant compared with the continuous cropping system

where a substantial fraction of residues from previous crop still remains undecomposed

at sowing. As a result, greater soil CO2 was emitted during the crop phase of the

continuous cropping system compared with the crop phase of the barley-fallow rotation

except for the 2004-2005 season where the NT and RT treatments of the PN-CF2

rotation emitted higher CO2 than the same treatments of the PN-CC system (Table 7.2).

During the 2003-2004 season, the greatest CO2 emissions were measured in SV

(9062 g CO2 m-2 average of the four tillage treatments), followed by PN-CC (6212 g

CO2 m-2 average of the four tillage treatments) and AG (4852 g CO2 m-2 average of the

four tillage treatments) (Table 7.3). At the same time, crop residue production from the

previous season followed the same trend with the greatest value in SV, followed by PN-

CC and AG (Table 7.3). During this 2003-2004 season, SV also recorded the greatest

seasonal rainfall, however followed by AG and PN-CC (Table 7.3). The following

season, PN-CC emitted the greatest CO2, followed by SV and AG. During this 2004-

2005 season, considerable greater rainfall was collected in PN-CC than in AG and SV,

although during this season, the greatest crop residues from previous season was

measured in AG (Table 7.3). Therefore, it is suggested that both seasonal rainfall and

crop residue from previous season were two major factors controlling differences in

seasonal CO2 emissions among experimental sites.

Page 163: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

147Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Table 7.3. Seasonal CO2 emissions (average of all the tillage treatments), seasonal rainfall and

crop residue production from previous season (average of the tillage treatments) during the

2003-2004 and 2004-2005 seasons at Selvanera (SV), Agramunt (AG) and Peñaflor (PN-CC,

continuous barley). Site Season Seasonal

CO2 emission¶

(g CO2 m-2)

Seasonal rainfall (mm)

Residue from previous season¶

(kg ha-1) SV 2003-2004 9062 263 9800 2004-2005 1770 20 1980

AG 2003-2004 4852 253 2305 2004-2005 1693 55 4175

PN-CC 2003-2004 6212 211 2740 2004-2005 2430 158 3823

¶ Average of all the tillage treatments.

3.3. Soil temperature and water content.

In all the sites and tillage treatments similar soil temperature trend was measured

over the whole study period. As an example, Figure 7.2 shows the time course of

surface soil temperature at the PN-CF1 plots. Several studies have concluded that soil

temperature is a major factor influencing soil CO2 emissions (Fortin et al., 1996;

Bajracharya et al. 2000; Frank et al., 2002). In our study, the influence of soil

temperature was depended of the cropping season (Table 7.4). When the whole study

period (2002-2005) was considered, this influence was low (R2 = 0.040–0.080) in both

the continuous barley system and the barley-fallow rotation (Table 7.4). However, when

the analysis was made season by season significant relationships were found (R2 ranged

from 0.200 to 0.430). However, for the 2003-2004 season no soil temperature effect on

soil CO2 emissions was found in any of the cropping systems (Table 7.4). Therefore,

this lack of significance in this particular season caused a drop in the total influence of

soil temperature on soil CO2 emissions during the whole study period.

Page 164: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

148

Capítulo 7

0

5

10

15

20

25

30

35

Nov

-02

Jan-

03

Mar

-03

May

-03

Jul-0

3

Sep

-03

Nov

-03

Jan-

04

Mar

-04

May

-04

Jul-0

4

Sep

-04

Nov

-04

Jan-

05

Mar

-05

May

-05

CT NT RT

Soi

l tem

pera

ture

at 5

cm

dep

th

Fig. 7.2. Soil temperature in the top 5 cm soil layer as influenced by tillage (CT, conventional

tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to June 2005 at PN-CF1 site

(barley-fallow rotation at Peñaflor). Bars indicate LSD (P<0.05) for comparisons among tillage

treatments at the same date where significant differences were found.

Gra

vim

etric

soi

l wat

er c

onte

nt (g

g-1

)

CT NT RT

0.000.050.100.150.200.250.300.350.40

Nov

-02

Jan-

03

Mar

-03

May

-03

Jul-0

3

Sep

-03

Nov

-03

Jan-

04

Mar

-04

May

-04

Jul-0

4

Sep

-04

Nov

-04

Jan-

05

Mar

-05

May

-05

Fig. 7.3. Gravimetric soil water content in the top 5 cm soil layer as influenced by tillage (CT,

conventional tillage; RT, reduced tillage; NT, no-tillage) from November 2002 to June 2005 at

PN-CF1 site (barley-fallow rotation at Peñaflor). Bars indicate LSD (P<0.05) for comparisons

among tillage treatments at the same date where significant differences were found.

Gravimetric soil water content varied from 2% to 23%, during the study period (Fig.

7.3). In contrast to soil temperature, with some exceptions, soil water content did not

influence soil CO2 emissions (Table 7.4). The exception corresponded to the 2002-2003

season at PN-CC when soil water content explained a 41% of the variability found on

soil CO2 emissions and was responsible of the weak but significant relationship

Page 165: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

149Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

obtained for the whole study period (Table 7.4). This low effect of soil water content on

soil CO2 emissions has been also reported by others authors (Hendrix et al., 1988; Frank

et al. 2006).

Table 7.4. Stepwise regression for each cropping season and cropping system (PN-CC,

continuous cropping; PN-CF1 and PN-CF2, cereal-fallow rotation).

Partial R2Site Cropping season

n

ST‡ SWC§

Equation

PN-CC 2002-2003 48 0.290 0.410 CO2 flux = – 0.34 + (2.51SWC) + (0.028ST) 2003-2004 42 NS¶ NS – 2004-2005 33 0.430 NS CO2 flux = 0.27 + (0.021ST)

2002-2005 123 0.050 0.080 CO2 flux = 0.035 + (2.49SWC) + (0.028 ST)

PN-CF1 2002-2003 39 0.400 NS CO2 flux = – 0.08 + (0.02 ST) 2003-2004 42 NS NS – 2004-2005 32 0.200 NS CO2 flux = 0.21 + (0.02ST)

2002-2005 114 0.040 NS CO2 flux = 0.36 + (0.013ST)

PN-CF2 2002-2003 48 0.330 NS CO2 flux = 0.10 + (0.011ST) 2003-2004 42 NS NS – 2004-2005 33 0.230 NS CO2 flux = 0.19 + (0.026ST)

2002-2005 123 0.080 NS CO2 flux = 0.23 + (0.012ST) ‡ ST: Soil temperature at 5 cm. § SWC: Gravimetric soil water content (0-5 cm). ¶ NS: no significant, P<0.05.

As mentioned before, during the 2003-2004 season no significant relationship was

found between soil CO2 emissions and both soil temperature and water content neither

in PN-CC nor PN-CF. This implies that variations on soil CO2 emissions during this

season may not be explained by microclimatic soil conditions.

3.4. Soil carbon balance.

Soil carbon balance was estimated from C ouputs and C inputs. As C ouputs was

used total cumulative CO2 emissions. Root respiration and microbial respiration were

not separated from CO2 measurements since the contribution of root respiration to total

soil CO2 emissions was relatively small. Buyanovsky et al. (1987), concluded that on an

annual basis root respiration accounts for 12-15% of the total soil CO2 emissions.

The C inputs consisted of C derived from straw residues, root biomass and

rhizodepositions. In the 3-yr study at the Peñaflor site (PN-CC, PN-CF1 and PN-CF2

fields), straw production ranged from 700 to 8200 kg ha-1. These large differences were

Page 166: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

150

Capítulo 7

mainly due to differences in precipitation among growing seasons. In the study area,

Moret et al. (2006), obtained similar values of straw production and concluded that

barley growth in these semiarid areas is influenced by both the amount and distribution

of seasonal precipitation. Root biomass was also a highly variable C input to the soil

with values ranging from 380 to 1060 kg C ha-1 in the first 30 cm soil depth. In this

study, we have obtained a large variability in the shoot to root ratio (1 to 12) among

cropping seasons and tillage treatments. Bolinder et al. (1997) concluded that site-

specific characteristics (e.g. soil moisture, temperature, N availability) partly explained

the differences found in the shoot to root ratio. To estimate the C input from

rhizodepositions, an important source of C into the soil (Swinnen et al., 1995), a ratio

1:1 between root C and rhizodepositons C was chosen (Keith et al., 1986).

The soil C balance was made in three cropping seasons at the PN site (PN-CC, PN-

CF1 and PN-CF2) and in two seasons at SV and AG. The Table 7.5 shows soil C

balances of the different sites, tillage treatments of each season studied, but without

considering the C lost as CO2 (C output) during the short fallow (from harvest to the

following crop sown).

In some seasons and under specific tillage treatments, positive soil C balances (C

gain in the soil) was observed (Table 7.5). For example, at the SV site, during the 2004-

2005 season, a soil C gain was measured in all the tillage treatment due to a low

seasonal CO2 emissions (Table 7.3) and a considerable rapeseed straw production

(11000 kg ha-1). Also, in the NT treatment of PN-CC and PN-CF1 it was observed C

gain during the 2002-2003 season (Table 7.5). However, although C losses were

measured in the most part of tillage treatments and sites (Table 7.5), a different trend in

the C dynamics was observed among treatments. Thus, C losses under CT were the

greatest in all the sites and cropping systems, whereas NT was always the treatment

with the lower C losses (Table 7.5). Similar results have been reported in other tillage

studies (Alvarez et al., 1995; Kessavalou et al., 1998). It is especial significant the soil

C losses observed during the 2003-2004 season (Table 7.5) in all the sites and tillage

treatments due to the anomalous soil CO2 emissions measured during this season (Table

7.2).

Page 167: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

151Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Table 7.5. Estimated soil C balance (C inputs – C outputs) as affected by tillage (CT,

conventional tillage; ST, subsoil tillage; RT, reduced tillage; NT, no-tillage) from November

2002 to June 2005 at PN-CC, PN-CF1 and PN-CF2 and from November 2003 to June 2005 at

SV and AG.

¶ Fallow phase of the barley-fallow rotation.

kg C ha-1Experimental Site

Cropping season NT RT ST CT

SV 2003-2004 -10865 -10816 -14756 -12152 2004-2005 3849 2824 4517 3340

AG 2003-2004 -6272 -6467 -6569 -8131 2004-2005 -1312 -2463 -2779 -3526

PN-CC 2002-2003 288 -640 - -245 2003-2004 -10364 -14127 - -13674 2004-2005 -2280 -4956 - -5640

PN-CF1 2002-2003¶ -1458 -1518 - -1744 2003-2004§ -6323 -8606 - -10180 2004-2005¶ -3300 -5093 - -6693

PN-CF2 2002-2003§ 705 -160 - -285 2003-2004¶ -6120 -7214 - -8643 2004-2005§ -2869 -4049 - -3888

§ Cropped phase of the barley-fallow rotation.

When the contribution of the different C pools to the soil C balance was analysed

(Table 7.6), it was observed that the C output, as C-CO2, was the main factor that

influenced C balances among tillage treatments. For example, in the 2002-2003 season,

at PN-CC, despite the greater C input measured in CT compared with NT, greater C

losses were measured under the CT treatment due to a considerable greater C output

under this treatment compared with NT (Table 7.6). However, differences in soil C

balances among sites were driven by differences in C inputs. Thus, SV and AG are

located in areas with greater mean seasonal rainfall and with a lower water deficit than

PN-CC, leading to a greater crop and residue production and, therefore, to greater C

inputs that produces lower soil C losses (Table 7.5).

Compared with the continuous cropping system (PN-CC) the barley-fallow rotation

(PN-CF1 and PN-CF2) led to an increase in the loss of C during the fallow phase due to

an absence of any C input. In the 2002-2003 season, although C outputs as C-CO2 were

more than two-fold greater in the PN-CC system than in the PN-CF rotation, more C

was lost in the later due to the absence of C input into the system (Table 7.6). However,

when we compared the barley crop phase of both cropping systems (e.g. 2004-2005

cropping season), similar C outputs and inputs were observed and, hence, comparable

Page 168: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

152

Capítulo 7

negative soil C balances (Table 7.6). Therefore, considering the overall system, the

intensification of the cropping systems led to a decrease in C losses due to a greater

input of crop residues.

It is noteworthy mention the small contribution (i.e. less than 2%) of soil CO2

emissions driven by tillage operations (short-term soil C emissions) to the total seasonal

soil CO2 emissions (Table 7.6).

4. Summary and conclusions

Soil CO2 emissions followed a seasonal trend with CO2 peaks coinciding with the

highest soil temperature values and the lowest CO2 emissions with the lowest

temperatures. However, weak or no significant relationships were found among soil

CO2 fluxes and soil temperature and water content. Therefore, we concluded that soil

CO2 emissions are the result of the interaction of several biotic and abiotic factors and

the interaction among them.

When no-tillage (NT) was compared to tilled treatments, and especially with CT,

lower soil CO2 emissions were observed during the cropping season (30% lower under

NT than under CT). These differences were produced by differences in soil microbial

decomposition of crop residues from the preceding crop due to the promoting effect of

tillage on microbial activity. This enhancement of soil the microbial activity may be

further stimulated by favourable climatic conditions (temperatures and rainfall) and,

especially, by the presence of a significant amount of residues from the previous crop.

In the cereal-fallow rotation, the existence of a long fallow phase leads to a decrease

in the seasonal soil CO2 emissions due to the absence of root respiration during the

fallow period and a lower residue input into the system. During the fallow phase, most

of the residues from the previous cropping season are decomposed. However, in the

continuous cropping system where crop residues are returned every season, part of

residue decomposition takes place during the period of crop growth together with other

C inputs originated from the crop (rhizodepositions).

The most part of the tillage treatments led to a loss of soil C (negative C balance),

especially under CT. Differences in C inputs (crop and root residues and

rhizodepositions) among tillage treatments were small and without any special trend.

Therefore, differences in the soil C balances among tillage treatments were mainly

explained by differences in soil CO2 emissions. Cropping system intensification led to a

reduction in C losses due to a greater crop residue production.

Page 169: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

153Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

¶ Sa

me

valu

es th

an th

e ro

ot re

sidu

e C

at h

arve

st (K

eith

et a

l. 19

86).

See

text

for d

etai

ls.

§ Soi

l C b

alan

ce =

C in

puts

– C

out

puts

. ‡ S

oil C

bal

ance

of t

he P

N-C

F1 ro

tatio

n in

the

2002

-200

3 se

ason

and

from

the

PN-C

F2 in

the

2004

-200

5 se

ason

.

2002

-200

3 cr

oppi

ng s

easo

n

2004

-200

5 cr

oppi

ng s

easo

n C

ropp

ing

syst

em

C in

puts

and

out

puts

N

T R

T C

T

NT

RT

CT

PN-C

C

C in

puts

, kg

C h

a-1

Barle

y st

raw

18

36

1628

21

61

55

6 47

8 33

5

Roo

t res

idue

71

6 58

0 57

6

1060

74

4 60

4

Rhi

zode

posit

ions

¶ 71

6 58

0 57

6

1060

74

4 60

4

Tota

l C g

ains

32

68

2788

33

13

26

76

1966

15

43

C o

utpu

ts, k

g C

-CO

2 ha-1

Lo

ng-te

rm so

il C

em

issio

n 29

68

3413

35

23

49

38

6888

71

35

Sh

ort-t

erm

soil

C e

miss

ion

12

15

35

18

34

48

Tota

l C lo

sses

29

80

3428

35

58

49

56

6922

71

83

Soil

C b

alan

ce

288

-640

-2

45

-2

280

-495

6 -5

640

PN

-CF‡

C in

puts

, kg

C h

a-1

Barle

y st

raw

0

0 0

68

0 10

44

837

R

oot r

esid

ue

0 0

0

924

1176

10

20

R

hizo

depo

sitio

ns

0 0

0

924

1176

10

20

To

tal C

gai

ns

0 0

0

2528

33

96

2877

C

out

puts,

kg

C-C

O2 h

a-1

Long

-term

soil

C e

miss

ion

1451

15

08

1726

5397

74

45

6765

Shor

t-ter

m so

il C

em

issio

n 7

10

18

0

0 0

To

tal C

loss

es

1458

15

18

1744

5397

74

45

6765

So

il C

bal

ance

§ -1

458

-151

8 -1

744

-2

869

-404

9 -3

888

T

able

7.6

. Est

imat

ed s

oil C

bal

ance

as

affe

cted

by

tilla

ge (

CT,

con

vent

iona

l till

age;

RT,

red

uced

tilla

ge; N

T, n

o-til

lage

) at

PN

-CC

, the

cont

inuo

us b

arle

y sy

stem

and

PN

-CF,

the

barle

y-fa

llow

rota

tion,

for t

he 2

002-

3003

and

200

4-20

05 c

ropp

ing

seas

ons.

Page 170: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

154

Capítulo 7

In conclusion, in semiarid dryland agroecosystems of the Ebro valley, alternative

agricultural management practices (NT and cropping systems intensification) led to a

decrease in soil C losses. The reduction in microbial decomposition rates due to the

adoption of no-tillage together with the greater C inputs (root and straw residues and

rhizodepositions) under the intensification of the cropping systems are factors retraining

soil C losses in these agroecosystems.

References

Akinremi, O.O., McGinn, S.M., McLean, H.D.J. 1999. Effects of soil temperature and

moisture on soil respiration in barley and fallow plots. Can J. Soil Sci. 79, 5-13.

Alvarez, R., Santanatoglia, O.J., García, R. 1995. Soil respiration and carbon inputs

from crops in a wheat-soybean rotation under different tillage systems. Soil Use

Manage. 11, 45-50.

Angers, D.A., Bissonnette, N., Légère, A., Samson, N. 1993. Microbial and biochemical

changes induced by rotation and tillage in a soil under barley production. Can J.

Soil Sci. 73, 39-50.

Bajracharya, R.M., Lal, R., Kimble, J.M. 2000. Diurnal and seasonal CO2-C flux from

soil as related to erosion phases in central Ohio. Soil Sci. Soc. Am. J. 64, 286-293.

Batjes, N.H. 1996. Total Carbon and Nitrogen in the soils of the world. Eur. J. Soil. Sci.

47, 151-163.

Bauer, A., Black, A.L. 1994. Quantification of the effect of soil organic matter content

on soil productivity. Soil Sci. Soc. Am. J. 58, 185-193.

Böhm, W. 1979. Methods of studying root systems. Ecological studies. 33. Springer-

Verlag. Berlin.

Bolinder, M.A., Angers, D.A., Dubuc, J.P. 1997. Estimating shoot to root ratios and

annual carbon inputs in soils for cereal crops. Agric. Ecosys. Environ. 63, 61-66.

Buyanovsky, G.A.; Kucera, C.L.; Wagner, G.H. 1987. Comparative analyses of carbon

dynamics in native and cultivated ecosystems. Ecology 68, 2023-2031.

Buyanovsky, G.A., Wagner, G.H., Gantzer, C.J. 1986. Soil respiration in a winter wheat

ecosystem. Soil Sci. Soc. Am. J. 50, 338-344.

Curtin, D., Wang, H., Selles, F., McConkey, B.G., Campbell, C.A. 2000. Tillage effects

on carbon fluxes in continuous wheat and fallow-wheat rotations. Soil Sci. Soc.

Am. J. 64, 2080-2086.

Page 171: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

155Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Emmerich, W.E. 2002. Carbon dioxide fluxes in a semiarid environment with high

carbonate soils. Agric. Forest Meteorol. 3105, 1-12.

Eswaran H., Van den Berg, E., Reich, P. 1993. Organic carbon in soils of the world.

Soil Sci. Soc. Am. J. 57, 192-194.

Fortin, M.C., Rochette, P., Pattey, E. 1996. Soil carbon dioxide fluxes from

conventional and no-tillage small-grain cropping systems. Soil Sci. Soc. Am. J.

60, 1541-1547.

Frank, A.B., Liebig, M.A., Hanson, J.D. 2002. Soil carbon dioxide fluxes in northern

semiarid grasslands. Soil Biol. Biochem. 34, 1235-1241.

Frank, A.B., Liebig, M.A., Tanaka, D.L. 2006. Management effect on soil CO2 efflux in

northen semiarid grassland and cropland. Soil Till. Res. 89, 78-85.

Franzluebbers, A.J., Hons, F.M., Zuberer, D.A. 1995. Tillage-induced seasonal changes

in soil physical properties affecting soil CO2 evolution under intensive cropping.

Soil Till. Res. 34, 41-60.

Hendrix, P.F., Han C.R., Groffman, P.M. 1988. Soil respiration in conventional and no-

tillage agroecosystems under different winter cover crop rotations. Soil Till. Res.

12, 135-148.

Jacinthe, P.A., Lal, R., Kimble, J.M. 2002. Carbon budget and seasonal carbon dioxide

emissions from a central Ohio Luvisol as influenced by wheat residue

amendement. Soil Till. Res. 67, 147-157.

Keith, H., Oades, J.M., Martin, J.K. 1986. Input of carbon to soil from wheat plants.

Soil Biol. Biochem. 18, 445-449.

Kessavalou, A., Mosier, A.R., Doran, J.W., Drijber, R.A., Lyon, D.J., Heinemeyer, O.

1998. Fluxes of carbon dioxide, nitrous oxide, and methane in grass sod and

winter wheat-fallow tillage management. J. Environ. Qual. 27, 1094-1104.

López, M.V., Arrúe, J.L., Álvaro-Fuentes J., Moret, D. 2005. Dynamics of surface

barley residues during fallow as affected by tillage and decomposition in semiarid

Aragon (NE Spain). Euro. J. Agron. 23, 26-36.

Moret, D., Arrúe, J.L., López M.V., Gracia, R. 2006. Winter barley performance under

different cropping and tillage systems in semiarid Aragon (NE Spain). Eur. J.

Agron. (in revision).

Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H., Van

Noordwijk, M., Woomer, P.L. 1997. Agricultural soils as a sink to mitigate CO2

emissions. Soil Use Managem. 13, 230-244.

Page 172: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

156

Capítulo 7

Paustian, K., Cole C.V., Sauerbeck, D., Sampson, N. 1998. CO2 mitigation by

agriculture, an overview. Climatic Change 40, 135-162.

Paustian, K., Six, J., Elliot, E.T., Hunt, H.W. 2000. Management options for reducing

CO2 emissions from agricultural soils. Biogeochemistry 48, 147-163.

Peterson, G.A., Halvorson, A.D., Havlin, J.L., Jones O.R., Lyon, D.J., Tanaka, D.L.

1998. Reduced tillage and increasing cropping intensity in the Great Plains

conserves soil C. Soil Till. Res. 47, 207-218.

Pumpanen, J., Kolari, P., Ilvesniemi, H., Minkkinen, K., Vesala, T., Niinistö, S., Lohila,

A., Larmola, T., Morero, M., Pihlatie, M., Janssens, I., Yuste, J.C., Grünzweig,

J.M., Reth, S., Subke, J.A., Savage, K., Kutsch, W., Ostreng, G., Ziegler, W.,

Anthoni, P., Lindroth, A., Hari, P. 2004. Comparison of different chamber

techniques for measuring soil CO2 efflux. Agric. For. Meteorol. 123, 159-176.

Rayment, M.B., Jarvis, P.G. 1997. An improved open chamber system for measuring

soil CO2 effluxes in the field. J. Geophys. Res. 102, 28779-28784.

Reicosky, D.C. 1997. Tillage methods and carbon dioxide loss fall versus spring tillage.

P. 99-111. In: Lal R., Kimble J. and Follet R. (ed.). Carbon sequestration in soil.

Intl. Symp. Columbus, OH. CRC Press, Boca Raton, Florida, USA.

Rochette, P., Desjardins, R.L., Pattey, E. 1991. Spatial and temporal variability of soil

respiration in agricultural fields. Can. J. Soil Sci. 71, 189-196.

Sánchez, M.L., Ozores, M.I., Colle, R., López, M.J., De Torre, B., García, M.A., Pérez,

I. 2002. Soil CO2 fluxes in cereal land use of the Spanish plateau, influence of

conventional and reduced tillage practices. Chemosphere 47, 837-844.

Sánchez, M.L., Ozores, M.I., López, M.J., Colle, R., De Torre, B., García, M.A., Pérez,

I. 2003. Soil CO2 fluxes beneath barley on the central Spanish plateau. Agric.

Forest Meteo. 118, 85-95.

SAS Institute, 1990. SAS user’s guide: Statistics. 6th ed. Vol. 2. SAS Inst., Cary, NC.

USA.

Six, J., Elliot, E.T., Paustian, K. 1999. Aggregate and soil organic matter dynamics

under conventional and no-tillage systems. Soil Sci. Soc. Am. J. 63, 1350-1358.

Swinnen, J., Van Veen, J.A., Merckx, R. 1995. Carbon fluxes in the rhizosphere of

winter wheat and spring barley with conventional vs. integrated farming. Soil

Biol. Biochem. 27, 811-820.

Page 173: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

157Long-term tillage effects on soil carbon Dioxide Fluxes in Semiarid Mediterranean Conditions

Soil Survey Staff. 1975. Soil taxonomy, a basic system of soil classification for making

and interpreting soil surveys. USDA-SCS Agric. Handbook 436. US Gov. Print.

Office, Washington, DC.

Page 174: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

Capítulo 8

Conclusiones generales

Page 175: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

161

Conclusiones generales

Manejo del suelo y contenido de carbono orgánico total, materia orgánica

particulada y carbono mineral asociado

1. Tras 15 años de comparación de sistemas de laboreo en agroecosistemas de

secano del valle del Ebro, el suelo bajo un sistema de siembra directa o no-

laboreo (NT) conduce, en comparación con otros sistemas de laboreo (laboreo

reducido, RT, laboreo con subsolado, ST y laboreo convencional, CT) a una

mayor concentración de carbono orgánico del suelo (COS) en el horizonte

superficial del suelo (primeros 10 cm) y a un mayor contenido de las

fracciones de materia orgánica estudiadas (materia orgánica particulada, POM

y carbono mineral-asociado, C-min). Sin embrago, en horizontes inferiores del

suelo, los contenidos de COS y sus respectivas fracciones son menores en NT

y mayores en CT. El mantenimiento de residuos de cosecha en la superficie

del suelo que conlleva la práctica de NT explica la acumulación de COS en los

primeros centímetros de suelo bajo este sistema de laboreo de conservación.

2. El contenido de COS acumulado en el perfil del suelo (0-40 cm) es, en

general, similar o ligeramente superior en NT que en el resto de los sistemas

de laboreo ensayados. Solamente en uno de los tres sitios de ensayo

considerados, Selvanera (Lleida), el COS es menor bajo NT y mayor bajo CT.

En este ensayo, la labor primaria del sistema de CT consiste en una labor

vertical con subsolador mientras que en los otros dos sitios de ensayo se

realiza con arado de vertedera con mezcla e inversión de suelo.

3. La intensificación de los sistemas de cultivo mediante la eliminación del

barbecho largo (16-18 meses) de la rotación cereal-barbecho (año y vez)

incrementa los niveles de COS en todos los tratamientos de laboreo ensayados

debido al mayor aporte de residuos de cosecha.

4. El índice de estratificación de COS resulta una buena herramienta para la

comparación de sistemas de laboreo y cultivo. En el presente trabajo, los

Page 176: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

162Capítulo 8

valores más elevados de este índice corresponden al sistema de NT, mientras

que los más bajos al de CT en todos los sitios de ensayo.

Fraccionamiento de materia orgánica en función del estado de agregación del suelo

5. El laboreo tiene una influencia directa en el estado de agregación del suelo,

disminuyendo el contenido de macroagregados estables (>2000 y 250-2000

µm de diámetro) con respecto al suelo inalterado (NT). Por el contrario, el

contenido de microagregados estables (53-250 µm de diámetro) no se ve

afectado por el tipo de laboreo.

6. La mayor proporción de macroagregados estables encontrada en la superficie

del suelo bajo NT que bajo RT y CT es debida, aparentemente, a un mayor

contenido de COS total en macroagregados. No obstante, en sistemas con un

menor contenido de materia orgánica en el suelo, tales como la rotación

cebada-barbecho, el COS total de los macroagregados no parece ser un

parámetro adecuado para explicar la mayor estabilidad de los macroagregados

de suelo en NT.

7. La mayor estabilidad de los macroagregados de suelo bajo NT se debe al

mayor contenido de materia orgánica intra-particulada fina (iPOM de tamaño

53-250 µm de diámetro) que bajo el resto de tratamientos de laboreo. Esta

fracción se encuentra localizada en los macroagregados y, más concretamente,

dentro de los microagregados formados en el interior de los macroagregados.

8. La presencia de un mayor contenido de microagregados dentro de los

macroagregados en NT y, por lo tanto, de iPOM de tamaño 53-250 µm, en

comparación con CT, es consecuencia de una menor tasa de formación-rotura

(turnover) de estos macroagregados bajo NT. El mayor contenido de

microagregados bajo NT es indicador del secuestro o estabilización a largo

plazo de C orgánico en el suelo a largo plazo, en forma de iPOM.

Page 177: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

163Conclusiones generales

9. A diferencia de la fracción iPOM, la fracción ligera (LF) y el carbono mineral-

asociado no explican adecuadamente la mayor proporción de macroagregados

estables encontrada en NT con respecto a CT y RT.

Dinámica temporal del estado de agregación del suelo bajo diferentes sistemas de

laboreo

10. En la superficie del suelo (0-5 cm), el tamaño medio y la estabilidad de los

agregados al agua son mayores bajo NT en comparación con RT y,

especialmente, con CT debido, principalmente, al mayor contenido de COS y

de biomasa microbiana en condiciones de NT.

11. A pesar de la variabilidad observada en el contenido de humedad del suelo a lo

largo de las dos campañas de estudio, no se encuentra ninguna relación entre

este parámetro y la distribución y estabilidad de los agregados en ninguno de

los sistemas de laboreo y de cultivo ensayados.

12. En todos los sistemas de cultivo, tanto el tamaño como la estabilidad de los

agregados en la superficie del suelo aumenta en el tiempo, con el crecimiento

del cultivo, debido al efecto estimulador del desarrollo radicular en la

actividad de los microorganismos del suelo.

13. Mientras que la distribución de tamaños de agregado no se ve influenciada por

el sistema de cultivo, la estabilidad de los agregados sí lo es debido a la fase de

barbecho largo en la rotación cebada-barbecho. Una menor actividad de los

microorganismos en el periodo de barbecho y un menor COS son las

principales causas de la menor estabilidad de los agregados en este sistema de

cultivo.

Manejo del suelo, emisiones de CO2 y balance de carbono

14. El laboreo provoca la liberación rápida (menos de 3 horas) del dióxido de

carbono (CO2) previamente almacenado en la estructura del suelo, proceso

Page 178: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

164Capítulo 8

conocido como degassing. Este flujo de CO2 aumenta con la intensidad del

laboreo, de manera que el flujo es máximo cuando se utiliza un arado de

vertedera y, en cambio, es prácticamente inapreciable en el sistema de NT.

15. Las diferencias observadas en la cantidad de CO2 emitida por el suelo para un

mismo sistema de laboreo son función de: (i) las características del suelo, (ii)

las condiciones microclimáticas desde la cosecha hasta el momento de labrar,

(iii) la calidad y cantidad de los residuos de cosecha y (iv) el tiempo

transcurrido desde la cosecha anterior hasta el momento del labrar.

16. Las emisiones de CO2 inducidas por el laboreo a corto plazo (1-2 semanas

después de las labores) se ven poco influenciadas por el contenido de humedad

o la temperatura del suelo. Sin embargo, sí resultan afectadas por el régimen

de lluvias.

17. Las emisiones de CO2 del suelo a la atmósfera a lo largo de la campaña de

cultivo son un 30% más bajas en NT que en CT, debido a las mejores

condiciones dejadas por el laboreo en el perfil del suelo para la actividad de

los microorganismos y la consiguiente mineralización del residuo de la

cosecha anterior.

18. La evolución temporal de las emisiones de CO2 durante la campaña se

caracteriza por altas emisiones durante los periodos con elevadas temperaturas

(primavera-verano) y bajas emisiones durante el invierno. Sin embargo, no se

observa ninguna relación significativa entre la temperatura del suelo y las

emisiones de CO2. Esto indica que las emisiones de CO2 a lo largo de la

campaña son el resultado de la acción de un conjunto de factores bióticos y

abióticos, así como de la interacción entre los mismos.

19. La fase de barbecho largo en la rotación cebada-barbecho implica una

disminución de las emisiones de CO2 del suelo a la atmósfera en todos los

sistemas de laboreo. Esto se debe al menor aporte de residuos de cultivo al

suelo y a la ausencia de raíces activas durante el periodo barbecho.

Page 179: Influencia del laboreo y del sistema de cultivo en el …digital.csic.es/bitstream/10261/7715/1/2006_Tesis...Universitat de Lleida Influencia del laboreo y del sistema de cultivo en

165Conclusiones generales

20. Los balances de C muestran, en conjunto, pérdidas de COS (balances

negativos) en todos los sistemas de laboreo, especialmente, en CT. Las

menores pérdidas de C orgánico corresponden a NT.

21. Las diferencias en los balances de C entre sistemas de laboreo son producidas,

principalmente, por las diferencias en las emisiones de CO2 del suelo a la

atmósfera (C outputs), ya que para un mismo sitio de ensayo las diferencias

entre los aportes de C (C inputs) son pequeñas. Sin embargo, las diferencias en

los balances de C entre sitios son debidas, principalmente, a las diferencias en

los aportes de C al suelo (C inputs).

22. La intensificación de los sistemas de cultivo lleva a una menor pérdida de

COS en todos los sistemas de laboreo respecto a la rotación cebada-barbecho,

ya que la fase de barbecho largo en dicha rotación implica un menor aporte de

C al suelo.