Muro L e Gravidade

download Muro L e Gravidade

of 55

Transcript of Muro L e Gravidade

  • 7/27/2019 Muro L e Gravidade

    1/55

    consulte o site:

    http://www.clubedoconcreto.com.br/

    http://www.clubedoconcreto.com.br/http://www.clubedoconcreto.com.br/
  • 7/27/2019 Muro L e Gravidade

    2/55

    CARMEL B. SABADO CE-162 PROF. GERONIDES P. ANCOG

    BSCE-5 2nd Excel Program 18-Aug-09

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program. =)

    ****====DESIGN OF GRAVITY RETAINING WALL====****

    1. Soil or gravel without fine particles,

    highly permeable.

    2. Sand or gravel with silt mixture, low

    permeability

    3. Silty sand, sand and gravel with high

    clay content

    4. Medium or stiff clay

    5. Soft clay, silt

    Table 1: Unit weights w, effective angles of internal friction , and coefficients of friction with concrete f.

    0.5 m

    qs = 20 kPa

    3.50 m

    1.10 m 0.60 m

    Solution: (Use class 2 of the table given above)Composite Section

    3.50 m

    1.10 m

    Soil pressure coefficient, Rankine equation for horizontal soil surface

    = 30 Passive soil pressure coefficient

    w = 18.85 kN/mqs = 20.00 kPa = 3.00

    h' = 1.061 m

    Distances computation

    Active soil pressure coefficient c1 = B/2 = 2.0000 m

    c2 = e/2 = 0.1250 m

    = 0.3333 c3 = e + a/2 = 0.5000 m

    c4 = (B - 2e - a)/3 + e + a = 1.7500 m

    c5 = B - e + e/2 = 3.8750 m

    c6 = (B - 2e - a)2/3 + e + a = 2.7500 m

    c7 = (B - e - a)/2 + e + a = 2.3750 m

    0.2

    5

    0.2

    5

    15.70 - 18.85 25 - 35 0.2 - 0.4

    14.10 - 17.25 20 -25 0.2 - 0.3

    17.25 - 18.85 23 - 30 0.3 - 0.4

    18.85 - 20.40 25 - 35 0.4 - 0.5

    w, kN/m , degrees f, coefficient

    17.25 - 18.85 33 -40 0.5 -0.6

    7W7c

    a

    3W 5c

    1W

    2W

    4W

    5W

    6W

    1c

    2c

    3c4c

    6c

    'h

    h

    e

    B

    d

    sin1

    sin1

    ahC

    sin1

    sin1

    phC

  • 7/27/2019 Muro L e Gravidade

    3/55

    Given retaining wall dimensions:

    a = 0.50 m Passive soil pressure:

    b = 1.10 m h = b= 1.10 m

    c = 3.50 m

    d = 0.60 m = 34.213 kN

    e = 0.25 m

    Active soil pressure: = 0.3667 m

    h = b + c = 4.60 m Tentative wall base dimension:

    = 97.144 kN B = 4.00 m

    = 1.7754 m

    Check retaining wall stability wc = 23.60 kN/m

    Friction coeff., f = 0.50

    component weights Wi ci RM=Wici

    W1 = Bdwc = 56.640 2.0000 113.280

    W2 = e(b - d)ws = 2.356 0.1250 0.295

    W3 = a(b + c - d)wc = 47.200 0.5000 23.600

    W4 = (B - 2e - a)(b + c - d)wc/2 = 141.600 1.7500 247.800

    W5 = (B - 2e - a)(b + c - d)ws/2 = 113.100 3.8750 438.263

    W6 = e(b + c - d)ws = 18.850 2.7500 51.838

    W7 = qs(B - e - a) = 65.000 2.3750 154.375

    Wi = 444.746 Wici = 1029.450

    Overturning moment: OM Factor of safety against overturning:

    OM = Pahyah = 172.47 kN-m

    Location of resultant with respect to toe: = 5.969008 > 2.00, ok!

    = 1.9269 m Factor of safety against sliding:

    = 0.0731 m = 2.641285 > 1.50, ok!

    B/3 = 1.33 m

    the middle third of the base. No tension will occur on the foundation.

    qmax = 121.61 kPa

    qmin = 100.76 kPa

    qa = 143 kPa

    qmax < qa, the wall is safe against soil bearing.

    0.5 m

    Retaining Wall Details qs = 20 kPa

    3.50 m

    1.10 m 0.60 m

    4.00 m

    0.2

    5 0.2

    5

    '22

    1hhwhCP ahah

    '23'3

    2

    hh

    hhhyah

    2

    2

    1whCP phph

    3hyph

    iv

    WR

    OMRMx

    xB

    e 2

    2minmax

    61

    B

    e

    B

    Rq v

    ahah

    ii

    goverturninyPOM

    cWRMFS

    ah

    phiv

    slid ingP

    PWffRFS

  • 7/27/2019 Muro L e Gravidade

    4/55

  • 7/27/2019 Muro L e Gravidade

    5/55

    Given retaining wall dimensions:

    a = 0.50 m Passive soil pressure:

    b = 1.10 m h = b= 1.10

    c = 3.50 m

    d = 0.60 m = 34.2128

    e = 0.25 m

    Active soil pressure: = 0.36667

    h = b + c = 4.60 m Tentative wall base dimension:

    = 97.1443 kN B = 4.00 m

    = 1.77536 m

    Check retaining wall stability: wc = 23.60 kN/m

    Friction coeff., f = 0.50

    component weights Wi ci RM=Wici

    W1 = Bdwc = 56.640 2.0000 113.280

    W2 = e(b - d)ws = 2.356 0.1250 0.295

    W3 = a(b + c - d)wc = 47.200 0.5000 23.600

    W4 = (B - 2e - a)(b + c - d)wc/2 = 141.600 1.7500 247.800

    W5 = (B - 2e - a)(b + c - d)ws/2 = 113.100 3.8750 438.263

    W6 = e(b + c - d)ws = 18.850 2.7500 51.838

    W7 = qs(B - e - a) = 65.000 2.3750 154.375

    Wi = 444.746 Wici = 1029.450

    Overturning moment: OM Factor of safety against overturning:

    OM = Pahyah = 172.47 kN-m

    Location of resultant with respect to toe: = 5.969008 > 2.00, ok!

    = 1.9269 m Factor of safety against sliding:

    = 0.0731 m = 2.641285 > 1.50, ok!

    B/3 = 1.33 m

    the middle third of the base. No tension will occur on the foundation.

    qmax = 121.6103 kPa

    qmin = 100.7628 kPa

    qa = 143 kPa

    0.5 m

    Retaining Wall Details qs = 20.00

    3.50 m 0.2

    5

    0.2

    5

    1.10 m 0.60 m

    4.00 m

    '22

    1hhwhCP ahah

    '23'3

    2

    hh

    hhhyah

    iv WR

    OMRMx

    xB

    e 2

    2minmax

    61

    B

    e

    B

    Rq v

    ahah

    ii

    goverturninyPOM

    cWRMFS

    ah

    phiv

    sl idi ngP

    PWffRFS

    2

    21 whCP phph

    3

    hy

    ph

    2minmax

    61

    B

    e

    B

    Rq v

  • 7/27/2019 Muro L e Gravidade

    6/55

    CARMEL B. SABADO CE-162 PROF. GERONID

    BSCE-5 2nd Excel Program

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====Design of Cantilever Retaining Wall====****

    Right Side Loading

    Given:

    fc' = 20.70 Mpa Retaining wall dimensions:

    fy = 414.00 Mpa a = 0.30 m

    s = 18.82 kN/m3 c = 4.50 m

    = 40 o

    = 0.50 Tentative dimentions:

    c = 23.60 kN/m3 B = 3.20 m

    qa = 143.50 kPa b = 0.40 m

    qs = 19.30 kPa d = 0.50 m

    3.65 m

    b(main) 25 mm Use Wu = 1.4DL + 1.7LL + 1.7H

    b(temp) 16 mm

    a

    Es = 200000 Mpa

    shear = 0.85 qs = 19.30 kPa

    flexure

    = 0.9

    smax = [ 3t , 450 ]min c

    h' = 1.026 m

    Cantilever Retaining Wall Figure:

    d

    b

    Property Line

    a

    h'

    c h

    d

    b

    B

    backfill height =

    W1

    C1

    W2

    C2

    W3

    W4

    W5

    C3

    C4

    C5

    W6

    C6

  • 7/27/2019 Muro L e Gravidade

    7/55

    Soil pressure coefficient, Rankine equation for horizontal surface:

    Active soil pressure coeffecient: Cah = 0.217443

    Active soil pressure: h = 5.00 m

    Pah = 1 Cahh(h+2h') =

    2 72.137 kN

    yah = h2

    + 3hh' =

    3(h + 2h') 1.9091 m

    Check the retaining wall stability:

    components weights Wi ci RM = Wici

    W1 = 37.760 1.6000 60.4160

    W2 = 31.860 0.1500 4.7790

    W3 = 5.310 0.3333 1.7700

    W4 = 237.132 1.8000 426.8376

    W5 = 4.235 0.3333 1.4115

    W6 = 55.97 1.75 97.9475

    Wi = 372.267 RM = 593.1616

    Overturning moment: OM = 137.7138 kN-m

    Factor of safety against overturning:

    FSoverturning = RM = 4.307 > 2.00 safe!!!!

    OM

    Factor of safety against sliding:

    FSsliding = (f Wi) = 2.580 > 1.50 safe!!!!

    Pah

    Check for bearing pressure: qa = 143.50 kPa

    Location of resultant with respect to toe:

    x = RM - OM = 1.2234 m

    Wi

    e = B - x = 0.376554 m

    2

    B / 3 = 1.07 m

    The middle third of the base where No tension will occur on the foundation.

    q = Wi 1 + 6e qmax = 142.001 kPa

    B B2

    qmin = 90.666 kPa

    Since qma < qa, wall is safe againts soil bearing.

    Design of stem:

    Ve

    p1=qs

    P1 P2

    p2 = Cahwsy

    y/2

    yM

    V

    d Vmax Mmax

  • 7/27/2019 Muro L e Gravidade

    8/55

  • 7/27/2019 Muro L e Gravidade

    9/55

    Design of Base:

    19.30

    5.00

    0.50

    Note: The expected worst condition of loading, the passive earth pressure of soil is generally

    neglected due to erosion of top soil, and the soil bearing at the toe is neglected due to

    the empending action to overturn.

    Use: 1.4 for DL

    1.7 for LL and service load bearing pressure

    qmax x 1.7 = 241.401 kPa V = (-Ws-Wc-qs)L = -470.11

    qmin x 1.7 = 154.132 kPa M = (-Ws-Wc-qs)L2

    /2 = -658.15Ws = 1.4sc = 118.566 kPa

    qs x 1.7 = 32.810 kPa

    Wc = 1.4cd = 16.520 kPa

    e = 0.377 m

    L= B - b) = 2.800 m

    Try d = 400 mm

    b = 1000 mm

    Ru = Mu = 4.570502 As,flexure = bd = 5216.20

    fbd2 s = 1000Ao = 94.11

    As

    = .85fc' 1 - 1 - 2Ru = 0.013041 As,temp = bd =0.002bd = 800.00

    fy .85fc' stemp = 1000 Atemp = 251.33

    As

    Use: = 0.01304

    Check for shear: Vuc = fc' bd = 257.8178 kN/m > V, safe!!!!

    6

    qmin

    qmax

    qs =

  • 7/27/2019 Muro L e Gravidade

    10/55

    Retaining Wall Details:

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

    0.30

    25 mm @

    16 mm temp. @ 16

    260 oc bw mm temp @

    5.00 25 mm @

    m

    25 mm @

    0.50

    16 mm temp. bars

    250 oc bw

    0.40 meters

  • 7/27/2019 Muro L e Gravidade

    11/55

    CARMEL B. SABADO CE-162 PROF. GERONID

    BSCE-5 2nd Excel Program

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====Design of Cantilever Retaining Wall===****

    Left Side Loading

    Given:

    fc' = 27.50 Mpa Retaining wall dimensions: Tentative dimentions:

    fy = 275.00 Mpa a = 0.30 m B = 3.00

    c = 23.60 kN/m3 H = 3.20 m b = 0.40

    s = 17.25 kN/m3 h = 1.00 m D = 0.50

    = 35 o

    = 0.45 Surcharge load: Es = 200000

    qa = 120.00 kPa qs2 = 19.50 kPa shear = 0.85b(main) = 25 mm qs1 = 19.20 kPa flexure = 0.9b(temp) = 16 mm

    smax = [ 3t , 450 ]min

    Minimun factor safety requirements:

    Overturning = 2.00

    Sliding = 1.50

    Cantilever Retaining Wall Figure:

    qs2 = 19.50 kPa

    a

    h' = 1.11 m

    H' = 1.13 m

    H

    qs1 = 19.20

    b

    B

    Property Line

    a

    H' qs2

    H

    qs1

    h'

    h

    D

    x

    b

    B

    W3

    W4

    W5

    W2

    W1

  • 7/27/2019 Muro L e Gravidade

    12/55

    Soil pressure coefficient, Rankine equation for horizontal surface:

    Active soil pressure coeffecient: Passive soil pressure coefficient:

    Cah = 0.271 Cph = 3.690

    h = 3.20 m h = 1.61

    Active soil pressure:

    Pah = 51.549 kN Passive soil pressure:

    yah = 1.467 m Pph = 177.889

    yph = 1.079

    Check the retaining wall stability:

    components weights Wi xi Mi B-xi Mx

    W1 = 22.656 0.1500 3.3984 2.850 64.5696

    W2 = 3.776 0.3333 1.2587 2.667 10.069333

    W3 = 35.400 1.5000 53.1000 1.500 53.1

    W4 = 144.690 1.7000 245.9730 1.300 188.097

    W5 = 18.225 0.3780 6.8890 2.622 47.785952

    Total = 202.091 310.6191 RM = 363.62189

    Overturning moment: OM = 75.6346 kN-m

    = 0.031239833 x = 0.066

    Factor of safety against overturning:

    FSoverturning = RM = 4.808 > 2.00 safe!!!

    OMFactor of safety against sliding:

    FSsliding = (f Wi)+Pph = 5.215 > 1.50 safe!!!

    Pah

    Check for bearing pressure:

    B / 3 = 1.000 m

    x = RM - OM = 1.4250 m within 1/3 o

    Wiq = 2WT , when x < 1/3 B = 94.543 kPa

    3x

    qmax = [4B - 6x]WT/B

    2

    = 77.46 kPa safe!!!qmin = [6x - 2B]WT/B

    2= 57.26 kPa safe!!!

    Design of stem:

    Vu = 1.7 [qsH + 0.5CahwsH2

    = 146.768 kN/m

    Mu = 1.7 Mmax = 220.696 kN-m/m

  • 7/27/2019 Muro L e Gravidade

    13/55

    M = qsy2/2 + 1/3Cahwsy

    3

    y M Amain = Dmain2

    = 490.874

    0.50 2.693 kN-m 4

    1.00 11.797 kN-m Atemp = Dtemp2

    = 201.0621.50 27.196 kN-m 4

    2.00 51.466 kN-m min = 0.5 [1.4/fy, fc'/4fy] = 0.00238372.50 85.284 kN-m max = .75 .85fc'b1 600 = 0.03715713.00 129.821 kN-m fy 600+fy

    Vuc = fc' = 0.74296

    Depth as required by shear: b = 1000 mm

    d = Vu = 197.56 mm

    Vucb

    Design for flexure:

    Try h = = 400 mm

    d = h - (100+s/2) = 287.5 mmRu = Mu = 2.966719

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.011576fy .85fc'

    Use: = 0.011576376

    As = bd = 3328.208 mm2/m

    spacing, S = [1000Ao/As, 3t,450]min = 147 mm oc

    Atemp = 0.0018bd = 517.50 mm2/m

    spacing, S = [1000Atemp/As, 5t,450]min = 388 mm oc

    Design of Toe:

    Vu = 1.7b [(qmax + qmin)/2 - (wcd + ws (h+h'))]= 97.4797 kN/m

    Mu = 1.7 [(B-b)2/2][qmin +2/3(B-b)(qmax - qmin) - [wc(d)-ws(h+h')]]

    = 253.0727332 kN-m/m

    min = 0.5 [1.4/fy, fc'/4fy] = 0.002383656max = .75 .85fc'b1 600 = = 0.037157143

    fy 600+fy

    Vuc = fc' = 0.7866 kN/m6

    Depth as required by shear: b = 1000 mmd = Vu = 123.9243 mm

    Vucb

    Design for flexure:

    Try h = 400 mm

    d = h - (100+s/2) = 287.5 mmRu = Mu = 3.401944

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.013432 Use: =fy .85fc'

  • 7/27/2019 Muro L e Gravidade

    14/55

    As = bd = 3861.697 mm2/m

    spacing, S = [1000Ao/As, 3t,450]min = 127.00 mm oc

    3t = 1200.00

    450 = 450

    Compare: 1000Ao/AS AND 3t, compare 3t and 450 whichever is smallest.

    SINCE 127.00 mm < 450.00 mm

    Use: 127.00 mm

    Atemp = 0.0018bd = 517.50 mm2/m

    spacing, S = [1000Atemp/As, 5t,450]min = 489 mm oc

    Retaining Wall Details:

    0.30

    25

    137

    16

    3.70 338

    25

    117.00

    0.50

    3.00

    16 mmtemp @0.40 338 oc

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

  • 7/27/2019 Muro L e Gravidade

    15/55

    CARMEL B. SABADO CE-162 PROF. GERONID

    BSCE-5 2nd Excel Program

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====DESIGN OF A CANTILEVER RETAINING WALL===****

    (with shear key)

    fc' = 20.7 Mpa Figure: x=1.5m

    fy = 414 Mpa

    ws = 18.82 kN/m qa = 19.2 kPa

    = 35

    f= 0.5

    wc = 23.6 kN/m e=3.65m

    qa = 143.5 kPa

    qs = 19.2 kPa

    backfill height = 3.65 m

    Use Wu = 1.4DL + 1.7LL + 1.7H c=1.0m

    Use 25mm for main rebars, 16mm for

    temperature bars.

    Solution:

    Composite section and location of forces

    e

    c

    d

    f

    Given retaining wall dimensions:

    a = 0.20 m Distances:

    c = 1.00 m x1 = B/2 = 1.5000

    e = 3.65 m x2 =xh + a/2 = 1.6000

    xh = 1.50 m x3 = xh + a + (b - a)/3 = 1.7667

    x4 = xh/2 = 0.7500

    Tentative dimensions: x5 = xh + b + (B - xh - b)/2 = 2.4500

    B = 3.00 m x6 = xh + a + 2(b - a)/3 = 1.8333

    b = 0.40 m x7 = xh + a + (B - xh - a)/2 = 2.3500

    d = 0.50 m x8 = xh + g/2 = 1.7000

    f = 0.40 m H = d + c + e = 5.1500

    g = 0.40 m h' = qs/ws = 1.0202

    h = 0.20 m

    Active soil pressure coefficient Passive soil pressure coefficient

    = 0.27099 = 3.69

    Active soil pressure: h = 5.15 m Passive soil pressure: h = 1.50

    h

    H

    ax

    e

    b

    B

    sin1

    sin1

    ahC

    sin1

    sin1

    phC

    7W

    6W

    5W

    4W 3W

    2W

    1W

    8W

    ahx7

    x

    6x

    5x

    2x

    4x3x

    1x

    8x

  • 7/27/2019 Muro L e Gravidade

    16/55

    = 94.42831 kN = 78.13017

    = 1.960 m = 0.500

    Check retaining wall stability:

    Component weights Wi xi RM=Wixi

    W1 = Bdwc = 35.4 1.5000 53.1

    W2 = a(c + e)wc = 21.948 1.6000 35.1168

    W3 = 0.5(b - a)(c + e)wc = 10.974 1.7667 19.3874

    W4 = c(x)ws = 28.23 0.7500 21.1725

    W5 = (B - x - b)(c + e)ws = 96.2643 2.4500 235.847535

    W6 = 0.5(b - a)(c + e)ws = 8.7513 1.8333 16.04405

    W7 = qs(B - x - a) = 24.96 2.3500 58.656

    W8 = 0.5f(g +h)qs = 2.304 1.7000 3.9168

    Wi = 228.8316 Wixi = 443.241085

    Overturning moment: OM Factor of safety against overturning:

    OM = Pahyah = 185.101 kN-m

    Location of resultant with respect to toe: = 2.39458534 > 2.00, ok!

    = 1.12808 m Factor of safety against sliding:

    = 0.37192 m = 2.03907049 > 1.50, ok!

    B/3 = 1.00 m > e, Rv will fall within the middle third of the base.

    No tension will occur on the foundation.

    qmax = 95.19002 kPa

    qmin = 57.36438 kPa

    qa = 143.5 kPa

    qmax < qa, the wall is safe against soil bearing

    Design of stem:

    p1 = qs

    P1

    M y y/2 P2

    V y/3

    p2 = Cahwsx

    Ve

    d

    Vmax Mmax

    STEM P V M

    Soil pressure at level y: Shear equation at level y:

    p1 = qs = 19.2 kPa Vy = P1 + P2 = qsy + 0.5Cahwsy

    p2 = Cahwsx = 5.10003 y kPa P1 = qsy = 19.2

    P2 = 0.5Cahwsy = 2.55

    '22

    1hhwhCP ahah

    2

    2

    1whCP phph

    '23'3

    2

    hh

    hhhyah

    3

    hyph

    iv WR

    OMRMx

    x

    B

    e 2

    ahah

    ii

    goverturninyPOM

    cWRMFS

    ah

    phiv

    sl id ing P

    PWffR

    FS

    2minmax

    61

    B

    e

    B

    Rq v

  • 7/27/2019 Muro L e Gravidade

    17/55

    Moment equation at level y:

    My = P1y1 +P2y2 = qsy/2 + 0.5Cahwsy/3

    M1 = P1y1 = qsy/2 = 9.6 y

    M2 = P2y2 = 0.5Cahwsy/3 = 0.85000547 y

    Given:

    Level, y Vy Vu=1.7Vy My Mu=1.7My

    0.00 0.000 0.000 0.000 0.000 Es = 200

    0.50 10.238 17.404 2.506 4.261 fy = 414

    1.00 21.750 36.975 10.450 17.765 fc' = 20.7

    1.50 34.538 58.714 24.469 41.597 fshear= 0.85

    2.00 48.600 82.620 45.200 76.840 fflexure = 0.90

    2.50 63.938 108.694 73.281 124.578 Db = 25

    3.00 80.550 136.935 109.350 185.895 Dtemp = 16

    3.50 98.438 167.344 154.044 261.875 Smax = [3t, 450]min

    4.00 117.600 199.920 208.000 353.6014.50 138.038 234.664 271.857 462.156

    4.65 144.418 245.510 293.039 498.167

    Compute:

    490.874 mm 201.062 mm

    = 0.0033816

    = 0.01603

    try d = 400 mm

    = 3.4595

    = 0.00939 ok!

    As,flexure = bd = 3757.84 mm/m

    = 130.627 mm oc

    As,temp = tempbd = 0.002bd = 800 mm/m

    = 251.327 mm oc

    Check for shear:

    = 257.818 kN/m

    At d distance from bottom of stem:

    y = 4.25 m

    Vud = 1.7(19.2y + 3.13667y) = 235.03537 kN/m

    At 3.00 m

    Try d = 300 mm

    = 2.29500

    = 0.00596 ok!

    2

    4bo DA

    2

    4temptemp

    DA

    yf

    4.1min

    ys

    s

    y

    c

    fE

    E

    f

    f

    003.

    003.'85.75. 1max

    2

    /

    bd

    MR uu

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '

    2

    /

    bd

    MR uu

    '85.211'85.2111

    c

    u

    y

    c

    y

    u

    fR

    ff

    fR

  • 7/27/2019 Muro L e Gravidade

    18/55

    As,flexure = bd = 1788.48 mm/m

    = 274.464 mm oc

    As,temp = tempbd = 0.002bd = 600 mm/m

    = 335.103 mm oc

    Design of heel and toe:

    ws2 Qs

    subject to erosion ws1 a b

    heel toe

    a b

    L1 L2

    Use load factor:

    1.4 for DL qmax qmin

    1.7 for ll and service load bearing pressures q1 q2

    qmax x 1.7 = 161.823 kPa e = 0.371923

    qmin x 1.7 = 97.51944 kPa At a, x =B/2 - xh = 0

    ws1 = 1.4(ws)c = 26.348 kPa q1 = 129.6712

    ws2 = 1.4(ws)(c + e) = 122.5182 kPa At b, x = [B/2 - (xh + b)] = -0.4

    qs x 1.7 = 32.64 kPa q2 = 103.9498

    Wc = 1.4(wc)d = 16.52 kPa L1 = xh = 1.50

    L2 = B - (xh + b) = 1.10

    Va = .5(qmax - q1)L1 + q1L1 - (ws1=0)L1 - WcL1 = 193.840711 kN

    Ma = (qmax - q1)L1/3 + (q1 - (ws1 = 0) - Wc)L1/2 = 151.408996 kN-m

    Vb = (.5(q2 - qmin)L2 = 0) + [(qmin = 0) - ws2 - wc - qs]L2 = -188.84602 kN

    Mb = [(q2 - qmin) = 0]L2/6 + [(qmin = 0) - ws2 - wc - qa]L2/2 = -103.86531 kN-m

    ws1 is taken equal to zero due to erosion of top soil at the heel, the expected worst condition of loading.

    At the toe, the worst condition of loading is when the wall is at empending action to overturn, soil bearing

    at the heel is assumed to be zero.

    At Heel:

    try d = 400 mm

    = 1.0514514

    = 0.0026205 not ok!-use pmin

    As,flexure = bd = 1352.657 mm/m

    = 362.896026 mm oc

    As,temp = tempbd = 0.002bd = 800 mm/m

    = 251.327412 mm oc

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    2/bdMR uu

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    A

    s,

    1000

  • 7/27/2019 Muro L e Gravidade

    19/55

    Check for shear:

    = 257.81777 kN/m > Va, safe

    At Toe:try d = 400 mm

    = 0.72129

    = 0.0017795 not ok!-use pmin

    As,flexure = bd = 1352.657 mm/m

    = 362.896026 mm oc

    As,temp= tempbd = 0.002bd = 800 mm/m

    = 251.327412 mm oc

    Check for shear:

    = 257.81777 kN/m > Va, safe

    Design of Key:

    pph1 pah1

    f

    pph2 h pah2

    Cah = 0.27099 Cph = 3.69

    At pah1: At pph1:

    yah = h' + c + e + d = 6.170 m yph = c = 1.00

    pah1 = Cahwsyah1 = 31.468178 kPa pph1 = Cphwsyph1 = 69.44904

    At pah2: At pph2:

    yah = h' + c + e + d + f = 6.5702 m yph = c + f = 1.40

    pah2 = Cahwsyah2 = 33.508191 kPa pph2 = Cphwsyph2 = 97.22866

    Vah = 1.7[pah1f + (pah2 - pah1)f/2] Vph = 1.7[pah1f + (pah2 - pah1)f/2]

    Vah = 22.091966 kN Vph = 56.67042

    Mah = 1.7[pah1f/2 + (pah2 - pah1)f

    /3] Mph = 1.7[pah1f

    /2 + (pah2 - pah1)f

    /3]Mah = 4.465 kN-m Mph = 11.964

    Net Shear:

    Vu = Vph - Vah = 34.5784538 kN

    Net Moment:

    Mu = Mph - Mah = 7.499 kN-m

    try d = 300 mm

    = 0.09258

    = 0.00022 not ok!-use pmin

    bdf

    Vc

    vcuc6

    '

    2

    /

    bd

    MR uu

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '

    'hhwCp ahah whCp phph

    2

    /

    bd

    MR u

    u

    '85.

    2

    11

    '85.2

    11

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

  • 7/27/2019 Muro L e Gravidade

    20/55

    As,flexure = bd = 1014.49275 mm/m

    = 483.861369 mm oc

    As,temp = tempbd = 0.002bd = 600 mm/m

    = 335.103216 mm oc

    Check for shear:

    = 193.36332 kN/m > Va, safe

    Details:

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

    1.00 m

    1.50 m

    0

    mmtemp @ 250 oc bw

    3.650

    mmtemp @ 250 oc bw

    0.40

    m

    0.40

    m

    0.00 m 0.50 -0.10 m

    0 mmtemp @

    0.00 m 250 oc bw

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '

  • 7/27/2019 Muro L e Gravidade

    21/55

    ES P. ANCOG

    18-Aug-09

    m

    m

    m

    m

    m

    m

    m

    - 0.4

    - 0.3

    - 0.4

    - 0.5

    fficient

    -0.6

  • 7/27/2019 Muro L e Gravidade

    22/55

    m

    kN

    m

    !

    !

  • 7/27/2019 Muro L e Gravidade

    23/55

    ES P. ANCOG

    18-Aug-09

    Pah

    yah

  • 7/27/2019 Muro L e Gravidade

    24/55

  • 7/27/2019 Muro L e Gravidade

    25/55

    /3

    y2

    y3

    0.003382

    0.016032

    safe!!!!

  • 7/27/2019 Muro L e Gravidade

    26/55

    kN

    kN-m

    mm2/m

    mm cc

    mm2/m

    mm cc

  • 7/27/2019 Muro L e Gravidade

    27/55

    240 oc

    250 oc

    250 oc

    360 oc

    meters

  • 7/27/2019 Muro L e Gravidade

    28/55

    ES P. ANCOG

    18-Aug-09

    m

    m

    m

    Mpa

    kPa

    D

  • 7/27/2019 Muro L e Gravidade

    29/55

    m

    kN

    m

    base

  • 7/27/2019 Muro L e Gravidade

    30/55

    mm2

    mm

    2

    kN/m

    0.013431989

  • 7/27/2019 Muro L e Gravidade

    31/55

    mm @oc

    mmtemp @oc

    mm @oc

    m

  • 7/27/2019 Muro L e Gravidade

    32/55

  • 7/27/2019 Muro L e Gravidade

    33/55

    kN

    m

    y

    y

  • 7/27/2019 Muro L e Gravidade

    34/55

    GPa

    MPa

    MPa

    mm

    mm

  • 7/27/2019 Muro L e Gravidade

    35/55

    m

    m

    kPa

    m

    m

    m

  • 7/27/2019 Muro L e Gravidade

    36/55

    m

    kPa

    m

    kPa

    kN

    kN-m

  • 7/27/2019 Muro L e Gravidade

    37/55

    mm @

    25

    240 oc

    16

    250 oc

    mmtemp @

    16

    120 oc16

    360 oc

    mm @

  • 7/27/2019 Muro L e Gravidade

    38/55

    CARMEL B. SABADO CE-162 PROF. GERONIDES P. ANCOG

    BSCE-5 2nd Excel Program 18-Aug-09

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====Design of Cantilever Retaining Wall===****

    Right Side Loading

    Given:

    fc' = 20.70 Mpa Retaining wall dimensions:

    fy = 414.00 Mpa a = 0.30 m

    s = 18.82 kN/m3 c = 4.50 m

    = 40 o

    = 0.50 Tentative dimentions:

    c = 23.60 kN/m3 B = 3.20 m

    qa = 143.50 kPa b = 0.40 m

    qs = 19.30 kPa d = 0.50 m3.65 m

    b(main) 25 mm Use Wu = 1.4DL + 1.7LL + 1.7H

    b(temp) 16 mm

    a

    Es = 200000 Mpa

    shear = 0.85 qs = 19.30 kPa

    flexure = 0.9

    smax = [ 3t , 450 ]min c

    h' = 1.026 m

    Cantilever Retaining Wall Figure:

    d

    b

    Property Line

    a

    h'

    c h

    Pah

    yah

    db

    B

    Soil pressure coefficient, Rankine equation for horizontal surface:

    Active soil pressure coeffecient: Cah = 0.217443

    Active soil pressure: h = 5.00 m

    Pah = 1 Cahh(h+2h') =

    2 72.137 kN

    yah =h

    2+ 3hh' =

    3(h + 2h') 1.9091 m

    backfill height =

    W1

    C1

    W2C2

    W3

    W4

    W5

    C3

    C4

    C5

    W6

    C6

  • 7/27/2019 Muro L e Gravidade

    39/55

    Check the retaining wall stability:

    components weights Wi ci RM = Wici

    W1 = 37.760 1.6000 60.4160

    W2 = 31.860 0.1500 4.7790

    W3 = 5.310 0.3333 1.7700

    W4 = 237.132 1.8000 426.8376

    W5 = 4.235 0.3333 1.4115

    W6 = 55.97 1.75 97.9475

    Wi = 372.267 RM = 593.1616

    Overturning moment: OM = 137.7138 kN-m

    Factor of safety against overturning:

    FSoverturning = RM = 4.307 > 2.00 safe!!!!

    OM

    Factor of safety against sliding:

    FSsliding = (f Wi) = 2.580 > 1.50 safe!!!!

    Pah

    Check for bearing pressure: qa = 143.50 kPa

    Location of resultant with respect to toe:

    x = RM - OM = 1.2234 m

    Wi

    e = B - x = 0.376554 m

    2

    B / 3 = 1.07 m

    The middle third of the base where No tension will occur on the foundation.

    q = Wi 1 + 6e qmax = 142.001 kPa

    B B2

    qmin = 90.666 kPa

    Since qma < qa, wall is safe againts soil bearing.

    Design of stem:

    Soil pressure at y: Moment equation at level y:

    p1 = qs = 19.30 kPa My = p1y1 + p2y2 = qsy2/2 + 0.5cahwsy

    3/3

    p2 = cahwsy = 4.09227 y kPa M1 = qsy2/2 = 9.65 y

    2

    M2 = 0.5cahwsy3/3 = 0.682 y

    3

    Shear equation at level y:

    Vy= p1 + p2 = qsy + 0.5cahwsy2

    At level y = 4.50 m

    p1 = qsy = 19.30 y Vu = 218.1 kN

    2.04614 y2

    Mu = 437.9 kN-m

    Db2

    = 490.874 mm2

    min = 1.4 / fy = 0.003382

    p2 = 0.5cahwsy2

    =

    Ve

    p1=qs

    P1 P2

    p2 = Cahwsy

    y/2yM

    V

    dVmax Mmax

    Stem P MV

  • 7/27/2019 Muro L e Gravidade

    40/55

    4 max = .75 .85fc'b1 600 = 0.016032

    Atemp = Dtemp2

    = 201.062 mm2

    fy 600+fy

    4

    Try d = 400 mm ; b = 1000 mm

    Ru = Mu = 3.040685

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.00812

    fy .85fc'

    Use: = 0.00812

    As,flexure = bd = 3248.172 mm2/m

    s = 1000Ao = 151.1231 mm cc

    As

    As,temp = bd =0.002bd = 800 mm2/m

    stemp = 1000 Atemp = 251.3274 mm cc

    As

    Check for shear: Vuc = fc' bd = 257.8178 kN/m

    6

    At d distance from the bottom of stem:

    yd = 4.10 m

    Vud = 192.9935 kN/m < Vuc, safe!!!!

    At y = 3.00 m

    Try d = 300 mm Ru = Mu = 2.209270

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.005722

    fy .85fc'

    Use: = 0.005722

    As,flexure = bd = 1716.459 mm2/m

    s = 1000Ao = 285.9805 mm cc

    As

    As,temp = bd =0.002bd = 600 mm2/m

    stemp = 1000 Atemp = 335.1032 mm cc

    As

    Design of Base:

    19.30

    5.00

    0.50

    Note: The expected worst condition of loading, the passive earth pressure of soil is generally

    neglected due to erosion of top soil, and the soil bearing at the toe is neglected due to

    the empending action to overturn.

    qmin

    qmax

    qs =

  • 7/27/2019 Muro L e Gravidade

    41/55

    Use: 1.4 for DL

    1.7 for LL and service load bearing pressure

    qmax x 1.7 = 241.401 kPa V = (-Ws-Wc-qs)L = -470.11 kN

    qmin x 1.7 = 154.132 kPa M = (-Ws-Wc-qs)L2/2 = -658.15 kN-m

    Ws = 1.4sc = 118.566 kPaqs x 1.7 = 32.810 kPa

    Wc = 1.4cd = 16.520 kPa

    e = 0.377 m

    L= B - b) = 2.800 m

    Try d = 400 mm

    b = 1000 mm

    Ru = Mu = 4.570502 As,flexure = bd = 5216.20 mm2/m

    fbd2

    s = 1000Ao = 94.11 mm cc

    As

    = .85fc' 1 - 1 - 2Ru = 0.013041 As,temp = bd =0.002bd = 800.00 mm2/m

    fy .85fc' stemp = 1000 Atemp = 251.33 mm cc

    As

    Use: = 0.01304

    Check for shear: Vuc = fc' bd = 257.8178 kN/m > V, safe!!!!

    6

    Retaining Wall Details:

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

    0.30

    25 mm @ 240 oc

    16 mm temp. @ 16

    260 oc bw mm temp @ 250 oc

    5.00 25 250 oc

    m

    25 mm @ 360 oc

    0.50 meters

    16 mm temp. bars

    250 oc bw

    0.40 meters

  • 7/27/2019 Muro L e Gravidade

    42/55

  • 7/27/2019 Muro L e Gravidade

    43/55

  • 7/27/2019 Muro L e Gravidade

    44/55

  • 7/27/2019 Muro L e Gravidade

    45/55

  • 7/27/2019 Muro L e Gravidade

    46/55

    CARMEL B. SABADO CE-162 PROF. GERONIDES P. ANCOG

    BSCE-5 2nd Excel Program 18-Aug-09

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====Design of Cantilever Retaining Wall===****

    Left Side Loading

    Given:

    fc' = 27.50 Mpa Retaining wall dimensions: Tentative dimentions:

    fy = 275.00 Mpa a = 0.30 m B = 3.00 m

    c = 23.60 kN/m3 H = 3.20 m b = 0.40 m

    s = 17.25 kN/m3 h = 1.00 m D = 0.50 m

    = 35 o

    = 0.45 Surcharge load: Es = 200000 Mpaqa = 120.00 kPa qs2 = 19.50 kPa shear = 0.85

    b(main) = 25 mm qs1

    = 19.20 kPa flexure

    = 0.9

    b(temp) = 16 mm

    smax = [ 3t , 450 ]min

    Minimun factor safety requirements:

    Overturning = 2.00

    Sliding = 1.50

    Cantilever Retaining Wall Figure:

    qs2 = 19.50 kPa

    a

    h' = 1.11 m

    H' = 1.13 m

    H

    qs1 = 19.20 kPa

    b

    B

    Property Line

    a

    H' qs2

    H

    qs1

    h'

    h

    D

    x

    bB

    D

    W3

    W4

    W5

    W2

    W1

  • 7/27/2019 Muro L e Gravidade

    47/55

    Soil pressure coefficient, Rankine equation for horizontal surface:

    Active soil pressure coeffecient: Passive soil pressure coefficient:

    Cah = 0.271 Cph = 3.690

    h = 3.20 m h = 1.61 m

    Active soil pressure:

    Pah = 51.549 kN Passive soil pressure:

    yah = 1.467 m Pph = 177.889 kN

    yph = 1.079 m

    Check the retaining wall stability:

    components weights Wi xi Mi B-xi Mx

    W1 = 22.656 0.1500 3.3984 2.850 64.5696

    W2 = 3.776 0.3333 1.2587 2.667 10.06933

    W3 = 35.400 1.5000 53.1000 1.500 53.1

    W4 = 144.690 1.7000 245.9730 1.300 188.097

    W5 = 18.225 0.3780 6.8890 2.622 47.78595Total = 202.091 310.6191 RM = 363.6219

    Overturning moment: OM = 75.6346 kN-m

    = 0.03124 x = 0.066

    Factor of safety against overturning:

    FSoverturning = RM = 4.808 > 2.00 safe!!!

    OM

    Factor of safety against sliding:

    FSsliding = (f Wi)+Pph = 5.215 > 1.50 safe!!!Pah

    Check for bearing pressure:

    B / 3 = 1.000 m

    x = RM - OM = 1.4250 m within 1/3 of base

    Wiq = 2WT , when x < 1/3 B = 94.543 kPa

    3x

    qmax = [4B - 6x]WT/B2

    = 77.46 kPa safe!!!

    qmin = [6x - 2B]WT/B2

    = 57.26 kPa safe!!!

    Design of stem:

    Vu = 1.7 [qsH + 0.5CahwsH2

    = 146.768 kN/m

    Mu = 1.7 Mmax = 220.696 kN-m/m

    M = qsy

    2

    /2 + 1/3Cahwsy

    3

  • 7/27/2019 Muro L e Gravidade

    48/55

    y M Amain = Dmain2

    = 490.874 mm2

    0.50 2.693 kN-m 4

    1.00 11.797 kN-m Atemp = Dtemp2

    = 201.062 mm2

    1.50 27.196 kN-m 4

    2.00 51.466 kN-m min = 0.5 [1.4/fy, fc'/4fy] = 0.002383662.50 85.284 kN-m max = .75 .85fc'b1 600 = 0.037157143.00 129.821 kN-m fy 600+fy

    Vuc = fc' = 0.7429 kN/m6

    Depth as required by shear: b = 1000 mm

    d = Vu = 197.56 mm

    Vucb

    Design for flexure:

    Try h = = 400 mmd = h - (100+s/2) = 287.5 mmRu = Mu = 2.966719

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.011576fy .85fc'

    Use: = 0.011576

    As = bd = 3328.208 mm2/m

    spacing, S = [1000Ao/As, 3t,450]min = 147 mm oc

    Atemp = 0.0018bd = 517.50 mm2/m

    spacing, S = [1000Atemp/As, 5t,450]min = 388 mm oc

    Design of Toe:

    Vu = 1.7b [(qmax + qmin)/2 - (wcd + ws (h+h'))]

    = 97.4797 kN/m

    Mu = 1.7 [(B-b)2/2][qmin +2/3(B-b)(qmax - qmin) - [wc(d)-ws(h+h')]]

    = 253.0727 kN-m/m

    min = 0.5 [1.4/fy, fc'/4fy] = 0.002384max = .75 .85fc'b1 600 = 0.037157

    fy 600+fy

    Vuc = fc' = 0.7866 kN/m6

    Depth as required by shear: b = 1000 mm

    d = Vu = 123.9243 mm

    VucbDesign for flexure:

    Try h = 400 mm

    d = h - (100+s/2) = 287.5 mmRu = Mu = 3.401944

    fbd2

    = .85fc' 1 - 1 - 2Ru = 0.013432 Use: = 0.01343199fy .85fc'

    As = bd = 3861.697 mm2/m

  • 7/27/2019 Muro L e Gravidade

    49/55

    spacing, S = [1000Ao/As, 3t,450]min = 127.00 mm oc

    3t = 1200.00

    450 = 450

    Compare: 1000Ao/AS AND 3t, compare 3t and 450 whichever is smallest.

    SINCE 127.00 mm < 450.00 mm

    Use: 127.00 mm

    Atemp = 0.0018bd = 517.50 mm2/m

    spacing, S = [1000Atemp/As, 5t,450]min = 489 mm oc

    Retaining Wall Details:

    0.30

    25 mm @137 oc

    16 mmtemp @3.70 338 oc

    25 mm @117.00 oc

    0.50 m

    3.00

    16 mmtemp @0.40 338 oc

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

  • 7/27/2019 Muro L e Gravidade

    50/55

    CARMEL B. SABADO CE-162 PROF. GERONIDES P. ANCOG

    BSCE-5 2nd Excel Program 18-Aug-09

    *note:the boxes in yellow should be inputed by the designer,while blue ones are computed by the program.=)

    ****====DESIGN OF A CANTILEVER RETAINING WALL===****

    (with shear key)

    fc' = 20.7 Mpa Figure: x=1.5m

    fy = 414 Mpa

    ws = 18.82 kN/m qa = 19.2 kPa

    = 35

    f= 0.5

    wc = 23.6 kN/m e=3.65m

    qa = 143.5 kPa

    qs = 19.2 kPa

    backfill height = 3.65 m

    Use Wu = 1.4DL + 1.7LL + 1.7H c=1.0m

    Use 25mm for main rebars, 16mm for

    temperature bars.

    Solution:

    Composite section and location of forces

    e

    c

    d

    f

    Given retaining wall dimensions:

    a = 0.20 m Distances:

    c = 1.00 m x1 = B/2 = 1.5000 m

    e = 3.65 m x2 =xh + a/2 = 1.6000 m

    xh = 1.50 m x3 = xh + a + (b - a)/3 = 1.7667 m

    x4 = xh/2 = 0.7500 m

    Tentative dimensions: x5 = xh + b + (B - xh - b)/2 = 2.4500 m

    B = 3.00 m x6 = xh + a + 2(b - a)/3 = 1.8333 m

    b = 0.40 m x7 = xh + a + (B - xh - a)/2 = 2.3500 m

    d = 0.50 m x8 = xh + g/2 = 1.7000 m

    f = 0.40 m H = d + c + e = 5.1500 m

    g = 0.40 m h' = qs/ws = 1.0202 m

    h = 0.20 m

    Active soil pressure coefficient Passive soil pressure coefficient

    = 0.27099 = 3.69

    Active soil pressure: h = 5.15 m Passive soil pressure: h = 1.50 m

    h

    H

    ax

    e

    b

    B

    sin1

    sin1

    ahC

    sin1

    sin1

    phC

    7W

    6W

    5W

    4W 3W

    2W

    1W

    8W

    ah

    x7

    x

    6x

    5x

    2x

    4x

    3x

    1x

    8x

  • 7/27/2019 Muro L e Gravidade

    51/55

    = 94.4283 kN = 78.1302 kN

    = 1.960 m = 0.500 m

    Check retaining wall stability:

    Component weights Wi xi RM=Wixi

    W1 = Bdwc = 35.4 1.5000 53.1

    W2 = a(c + e)wc = 21.948 1.6000 35.1168

    W3 = 0.5(b - a)(c + e)wc = 10.974 1.7667 19.3874

    W4 = c(x)ws = 28.23 0.7500 21.1725

    W5 = (B - x - b)(c + e)ws = 96.2643 2.4500 235.848

    W6 = 0.5(b - a)(c + e)ws = 8.7513 1.8333 16.0441

    W7 = qs(B - x - a) = 24.96 2.3500 58.656

    W8 = 0.5f(g +h)qs = 2.304 1.7000 3.9168

    Wi = 228.832 Wixi = 443.241

    Overturning moment: OM Factor of safety against overturning:

    OM = Pahyah = 185.101 kN-m

    Location of resultant with respect to toe: = 2.39459 > 2.00, ok!

    = 1.12808 m Factor of safety against sliding:

    = 0.37192 m = 2.03907 > 1.50, ok!

    B/3 = 1.00 m > e, Rv will fall within the middle third of the base.

    No tension will occur on the foundation.

    qmax = 95.19 kPa

    qmin = 57.3644 kPa

    qa = 143.5 kPa

    qmax < qa, the wall is safe against soil bearing

    Design of stem:

    p1 = qs

    P1

    M y y/2 P2

    V y/3

    p2 = Cahwsx

    Ved

    Vmax Mmax

    STEM P V M

    Soil pressure at level y: Shear equation at level y:

    p1 = qs = 19.2 kPa Vy = P1 + P2 = qsy + 0.5Cahwsy

    p2 = Cahwsx = 5.10003 y kPa P1 = qsy = 19.2 y

    P2 = 0.5Cahwsy = 2.55 y

    Moment equation at level y:

    My = P1y1 +P2y2 = qsy/2 + 0.5Cahwsy/3

    M1 = P1y1 = qsy/2 = 9.6 y

    '22

    hhwhCP ahah 2

    2whCP phph

    '23'3

    2

    hh

    hhhyah

    3

    hyph

    iv WR

    OMRMx

    xB

    e 2

    ahah

    ii

    goverturninyPOM

    cWRMFS

    ah

    phiv

    slidingP

    PWffRFS

    2minmax

    61

    B

    e

    B

    Rq v

  • 7/27/2019 Muro L e Gravidade

    52/55

    M2 = P2y2 = 0.5Cahwsy/3 = 0.85001 y

    Given:

    Level, y Vy Vu=1.7Vy My u=1.7My

    0.00 0.000 0.000 0.000 0.000 Es = 200 GPa

    0.50 10.238 17.404 2.506 4.261 fy = 414 MPa

    1.00 21.750 36.975 10.450 17.765 fc

    ' = 20.7 MPa

    1.50 34.538 58.714 24.469 41.597 fshear= 0.85

    2.00 48.600 82.620 45.200 76.840 fflexure = 0.90

    2.50 63.938 108.694 73.281 124.578 Db = 25 mm

    3.00 80.550 136.935 109.350 185.895 Dtemp = 16 mm

    3.50 98.438 167.344 154.044 261.875 Smax = [3t, 450]min

    4.00 117.600 199.920 208.000 353.601

    4.50 138.038 234.664 271.857 462.156

    4.65 144.418 245.510 293.039 498.167

    Compute:

    490.874 mm 201.062 mm

    = 0.00338

    = 0.01603

    try d = 400 mm

    = 3.4595

    = 0.00939 ok!

    As,flexure = bd = 3757.84 mm/m

    = 130.627 mm oc

    As,temp = tempbd = 0.002bd = 800 mm/m

    = 251.327 mm oc

    Check for shear:

    = 257.818 kN/m

    At d distance from bottom of stem:

    y = 4.25 m

    Vud = 1.7(19.2y + 3.13667y) = 235.035 kN/m

    At 3.00 m

    Try d = 300 mm

    = 2.29500

    = 0.00596 ok!

    As,flexure = bd = 1788.48 mm/m

    = 274.464 mm oc

    2

    4bo

    DA

    2

    4temptemp

    DA

    yf

    4.1min

    ys

    s

    y

    c

    fE

    E

    f

    f

    003.

    003.'85.75. 1

    max

    2

    /

    bd

    MR u

    u

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '

    2

    /

    bd

    MR u

    u

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    oAs 1000

  • 7/27/2019 Muro L e Gravidade

    53/55

  • 7/27/2019 Muro L e Gravidade

    54/55

    try d = 400 mm

    = 0.72129

    = 0.00178 not ok!-use pmin

    As,flexure = bd = 1352.66 mm/m

    = 362.896 mm oc

    As,temp= tempbd = 0.002bd = 800 mm/m

    = 251.327 mm oc

    Check for shear:

    = 257.818 kN/m > Va, safe

    Design of Key:

    pph1 pah1

    f

    pph2 h pah2

    Cah = 0.27099 Cph = 3.69

    At pah1: At pph1:

    yah = h' + c + e + d = 6.170 m yph = c = 1.00 m

    pah1 = Cahwsyah1 = 31.4682 kPa pph1 = Cphwsyph1 = 69.449 kPa

    At pah2: At pph2:

    yah = h' + c + e + d + f = 6.5702 m yph = c + f = 1.40 m

    pah2 = Cahwsyah2 = 33.5082 kPa pph2 = Cphwsyph2 = 97.2287 kPaVah = 1.7[pah1f + (pah2 - pah1)f/2] Vph = 1.7[pah1f + (pah2 - pah1)f/2]

    Vah = 22.092 kN Vph = 56.6704 kN

    Mah = 1.7[pah1f/2 + (pah2 - pah1)f/3] Mph = 1.7[pah1f/2 + (pah2 - pah1)f/3]

    Mah = 4.465 kN-m Mph = 11.964 kN-m

    Net Shear:

    Vu = Vph - Vah = 34.5785 kN

    Net Moment:

    Mu = Mph - Mah = 7.499 kN-m

    try d = 300 mm

    = 0.09258

    = 0.00022 not ok!-use pmin

    As,flexure = bd = 1014.49 mm/m

    = 483.861 mm oc

    As,temp = tempbd = 0.002bd = 600 mm/m

    2

    /

    bd

    MR uu

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '

    'hhwCp ahah whCp phph

    2/

    bdMR uu

    '85.

    211

    '85.211

    1

    c

    u

    y

    c

    y

    u

    f

    R

    f

    f

    f

    R

    s

    o

    A

    As

    1000

  • 7/27/2019 Muro L e Gravidade

    55/55

    = 335.103 mm oc

    Check for shear:

    = 193.363 kN/m > Va, safe

    Details:

    Note: the spacing of the reinforcement is upon the desire of the designer based on the computed bar spacing above.

    0.20 m

    3.65 m 25 mm @

    240 oc

    16 mmtemp @

    16 250 ocmmtemp @ 250 oc bw

    25 mm @

    1.00 120 oc

    16 25

    mmtemp @ 250 oc bw mm @ 360 oc

    0.50

    m

    0.40

    m

    1.50 m 0.40 1.10 m

    16 mmtemp @

    0.20 m 250 oc bw

    temps

    temp

    tempA

    As

    ,

    1000

    bdf

    Vc

    vcuc6

    '