Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

71
Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10

Transcript of Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Page 1: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Prof. Dr. Kamel Bensebaa

Processamento de Imagens

Aula 10

Page 2: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Multiresolução e Transformada Multiresolução e Transformada waveletswavelets

Na última década, a análise de wavelets tem despertado muito interesse de vários pesquisadores de diferentes áreas

Atualmente essa teoria representa uma das ferramentas mais potentes nas áreas de processamento de sinais e processamento de imagens

Encontra suas aplicabilidades para solucionar problemas tais como:– Segmentação de imagens– Atenuação de ruído– Compressão de imagens

Page 3: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Multiresolução e Transformada Multiresolução e Transformada waveletswavelets

A Transformada wavelets como é conhecida é uma melhoria da Transformada de Fourier – É capaz de decompor e descrever

outros funções no domínio de freqüências de forma que podemos analisar estas funções em diferentes escalas de freqüência e de tempo.

Page 4: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de FourierFourier

A Transformada de Fourier é a ferramenta mais conhecida para análise de sinais

Separa o sinal em seus componentes (co-senos e senos) de diferentes freqüências

Outra maneira de ver a Transformada de Fourier seria como uma técnica matemática que transforma o sinal observado no domínio de tempo ( ou de espaço) para o domínio de freqüência/periodicidade (número de ondas, no caso espacial)

Page 5: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de FourierFourier

A análise de Fourier faz a dualidade (coexistência) entre uma função estacionária f de uma variável t (cujo as propriedades estatísticas são independentes do tempo) e uma função F da variável =1/t, chamada transformada de Fourier de f .

dtetfF ti .).()(

dveFtf ti .).(21)(

Page 6: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de FourierFourier

Assim, é possível acessar ao comportamento Assim, é possível acessar ao comportamento freqüêncial de uma função do tempo pela sua freqüêncial de uma função do tempo pela sua representação num escala graduada em freqüênciasrepresentação num escala graduada em freqüências

Da mesma forma é possível reconstruir a função do Da mesma forma é possível reconstruir a função do

tempo a partir da sua transformada de Fouriertempo a partir da sua transformada de Fourier Ao longo do tempo, os algoritmos de cálculo da Ao longo do tempo, os algoritmos de cálculo da

transformada de Fourier evoluíram para conduzir à transformada de Fourier evoluíram para conduzir à transformada de Fourier rápida ou FFT, desenvolvida transformada de Fourier rápida ou FFT, desenvolvida por James Cooley e John Tuckey em 1965por James Cooley e John Tuckey em 1965

Page 7: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de FourierFourier

A Transformada de Fourier de um sinal contínua A Transformada de Fourier de um sinal contínua f f ((tt)) apresenta um sério problema para análise apresenta um sério problema para análise de sinais que mudam durante o tempo, visto de sinais que mudam durante o tempo, visto que na transformação para o domínio das que na transformação para o domínio das freqüências, a informação do tempo é perdidafreqüências, a informação do tempo é perdida

Para sinais estacionários (conteúdo em Para sinais estacionários (conteúdo em freqüências não muda ao longo do tempo ou a freqüências não muda ao longo do tempo ou a composição em freqüências dos sinais é composição em freqüências dos sinais é independente do tempo), esse problema é independente do tempo), esse problema é indiferente.indiferente.

dtetfF ti .).()(

Page 8: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Limitação da Limitação da Transformada de Transformada de

FourierFourier A maioria dos sinais (sinais físicos) como o A maioria dos sinais (sinais físicos) como o som de um sirene não são estacionários ou som de um sirene não são estacionários ou transitórios (fluxos, mudanças abruptas, início transitórios (fluxos, mudanças abruptas, início ou final de um evento, etc.)ou final de um evento, etc.)

Como estas características são as partes mais Como estas características são as partes mais importantes de um sinal, a análise de Fourier importantes de um sinal, a análise de Fourier se torna inadequada para a detecção deste se torna inadequada para a detecção deste tipo de sinaistipo de sinais

Portanto, a Transformada de Fourier apresenta Portanto, a Transformada de Fourier apresenta limitações quando se trata de sinais não limitações quando se trata de sinais não estacionários que representam a maioria dos estacionários que representam a maioria dos sinais físicossinais físicos

Page 9: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Limitação da Limitação da Transformada de Transformada de

FourierFourier Em outras palavras, podemos dizer que a TF não Em outras palavras, podemos dizer que a TF não leva em conta a informação veiculada pela leva em conta a informação veiculada pela estrutura temporal do sinal o que torna difícil estrutura temporal do sinal o que torna difícil determinar ou localizar as descontinuidades do determinar ou localizar as descontinuidades do sinalsinal

Variações de freqüências dependantes do tempo Variações de freqüências dependantes do tempo são comuns em:são comuns em:– Voz humanaVoz humana– Sinais geofísicos não estacionáriosSinais geofísicos não estacionários

Para estudar tais sinais, deve-se efetuar uma Para estudar tais sinais, deve-se efetuar uma Transformada capaz de obter o conteúdo de Transformada capaz de obter o conteúdo de freqüências de um sinal localmente no tempo (ou freqüências de um sinal localmente no tempo (ou no espaço)no espaço)

Page 10: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de Fourier JaneladaFourier Janelada

Para superar este problema, várias alternativas Para superar este problema, várias alternativas foram propostas objetivando ter uma análise ao foram propostas objetivando ter uma análise ao mesmo tempo temporal e freqüêncial de sinais mesmo tempo temporal e freqüêncial de sinais não estacionáriosnão estacionários

A primeira delas foi a Transformada de Fourier A primeira delas foi a Transformada de Fourier de curta duração (de curta duração (Short Time Fourier TransformShort Time Fourier Transform) ) ou a Transformada de Fourier Janelada ou a Transformada de Fourier Janelada ((Windowed Fourier TransformWindowed Fourier Transform))

Esta transformada foi desenvolvida por Denis Esta transformada foi desenvolvida por Denis Gabor (1946)Gabor (1946)

Page 11: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de Fourier JaneladaFourier Janelada

Gabor adaptou esta transformada para Gabor adaptou esta transformada para analisar uma pequena porção do sinal em um analisar uma pequena porção do sinal em um tempo através da transformada de Fourier tempo através da transformada de Fourier janeladajanelada

A idéia de Gabor é introduzir um parâmetro de freqüência local (local no tempo) como se a "Transformada de Fourier Local" observasse o sinal através de uma curta "janela" dentro da qual o sinal permanece aproximadamente estacionário.

Page 12: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de Fourier JaneladaFourier Janelada

Na tentativa de analisar séries não-estacionárias utilizada-se a transformada de Fourier de curta duração (TFCD) ou transformada de Gabor

Para um dado sinal f(t), aplicamos uma janela g(t) a f(t):

Essa janela é real, tem duração finita e é centrada em t0 . A transformada de Fourier de curta duração (TFCD) é, então, definida por:

Essa transformada é calculada para todos os valores de t0 e fornece uma representação em tempo-freqüência de f(t)

)()(),( 00 ttgffttf g

dtettgtftGf ti

)()(),( 00

Page 13: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada de Transformada de Fourier JaneladaFourier Janelada

Necessita-se agora de uma representação bidimensional F(,t0) do sinal f(t), composta por características espectrais dependentes do tempo.

Existem diversas escolhas para a janela, sendo a mais comum uma janela Gaussiana.

O detalhe mais importante é que uma vez fixada a janela para a STFT, a resolução no tempo e na freqüência f e t permanece constante em todo o plano t –f– Ilustração da transformada de Fourier de um sinal continua

f(t)

Page 14: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Limitações da Transformada Limitações da Transformada de Fourier Janeladade Fourier Janelada

O sinal está sendo analisado por uma janela de dimensão fixa, a resposta tempo-freqüência é então a mesma para todas as freqüências.

Conseqüentemente, a janela não é suficientemente Conseqüentemente, a janela não é suficientemente larga para as freqüências pequenas e não é larga para as freqüências pequenas e não é suficientemente curta para as freqüências altas. suficientemente curta para as freqüências altas.

Obtém-se então uma análise que leva em conta o Obtém-se então uma análise que leva em conta o aspecto temporal mas onde a qualidade de análise aspecto temporal mas onde a qualidade de análise freqüêncial vale apenas para as freqüências freqüêncial vale apenas para as freqüências “médias” “médias”

Page 15: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Limitações da Transformada Limitações da Transformada de Fourier Janeladade Fourier Janelada

Observa-se que o estudo das freqüências extremas Observa-se que o estudo das freqüências extremas contém excessivas informações interessantes como contém excessivas informações interessantes como os contornos ou o ruído e, através as baixas os contornos ou o ruído e, através as baixas freqüências identifica-se a natureza da imagem freqüências identifica-se a natureza da imagem como por exemple faces paisagem, etc. como por exemple faces paisagem, etc.

Portanto a TFJ trabalha com uma janela fixa no Portanto a TFJ trabalha com uma janela fixa no domínio tempo-freqüência, o que torna mais difícil domínio tempo-freqüência, o que torna mais difícil capturar os componentes de alta e baixa capturar os componentes de alta e baixa freqüências simultaneamentefreqüências simultaneamente

Em outras palavras, a TFJ não conta com a Em outras palavras, a TFJ não conta com a flexibilidade de uma janela que aumenta para flexibilidade de uma janela que aumenta para baixas freqüências e diminua para altas baixas freqüências e diminua para altas freqüências.freqüências.

Page 16: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Limitações da Transformada Limitações da Transformada de Fourier Janeladade Fourier Janelada

A TFJ é mais recomendada para a análise A TFJ é mais recomendada para a análise de processos onde todas suas de processos onde todas suas freqüências possuem a mesma freqüências possuem a mesma freqüênciafreqüência

Quando as freqüências variam a Quando as freqüências variam a aplicação de uma outra transformada aplicação de uma outra transformada tipo wavelets é necessária visto que tem tipo wavelets é necessária visto que tem a característica de flexibilidade de janela a característica de flexibilidade de janela apropriadaapropriada

Page 17: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Segundo Ingrid DaubechiesSegundo Ingrid Daubechies “ “A Transformada Wavelets é uma A Transformada Wavelets é uma

ferramenta que fatia dados ou ferramenta que fatia dados ou funções ou operadores em funções ou operadores em componentes freqüências diferentes componentes freqüências diferentes e então estuda cada componente e então estuda cada componente com uma resolução casada com sua com uma resolução casada com sua escalaescala”.”.

Page 18: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

A Transformada Wavelets representa A Transformada Wavelets representa uma melhoria da transformada de uma melhoria da transformada de Fourier visto que na análise Wavelets Fourier visto que na análise Wavelets a escala possui um papel importante a escala possui um papel importante no processamento de dadosno processamento de dados

A Wavelet pode ser utilizando em A Wavelet pode ser utilizando em processamento de sinais e imagens processamento de sinais e imagens utilizando diferentes escalas e utilizando diferentes escalas e resoluçõesresoluções

Page 19: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Ilustramos a Transformada Wavelet Ilustramos a Transformada Wavelet contínua (contínua (Continuous Wavelet Continuous Wavelet TransformTransform) de um sinal contínuo ) de um sinal contínuo ff((tt)) da seguinte forma:da seguinte forma:

Page 20: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Uma interpretação interessante está associada com Uma interpretação interessante está associada com imagens do tipo “imagens do tipo “mapasmapas”.”.

Uma mudança de escala pode permitir:Uma mudança de escala pode permitir:Escala maior Escala maior Visão mais global e menor precisão Visão mais global e menor precisão

(baixa freqüência).(baixa freqüência).Escala menor Escala menor Detalhes, mas perde-se em estudar o Detalhes, mas perde-se em estudar o

comportamento global (alta freqüência).comportamento global (alta freqüência). A análise Wavelet permite visualizar tanto a A análise Wavelet permite visualizar tanto a florestafloresta

quanto as quanto as árvores.árvores.

Page 21: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Existe um grande número de Existe um grande número de funções que podem ser eleitas funções que podem ser eleitas como como Wavelets mãe (outra Wavelets mãe (outra vantagem)vantagem)..

Nome das famílias:Nome das famílias: Haar, Daubechies, Symlets, Haar, Daubechies, Symlets,

Coiflets, Biorthogonal, Reverse Coiflets, Biorthogonal, Reverse Biorthogonal, Meyer, etcBiorthogonal, Meyer, etc

Normalmente se utiliza Normalmente se utiliza famílias de Wavelets que famílias de Wavelets que definem definem bases ortogonaisbases ortogonais, , pois dessa forma é possível pois dessa forma é possível realizar a realizar a transformada transformada inversainversa..

Transformada WaveletsTransformada WaveletsUm mar de waveletsUm mar de wavelets

Page 22: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Podemos definir a Tranformada Wavelets Contínua como a soma ao longo do tempo de um sinal multiplicado por uma escala, e deslocado por uma função Wavelet Ψ (Psi), também chamada Wavelet mãe

O resultado da CWT são vários coeficientes C, que são funções da escala e da posição.

dttposiçãoescalatfposiçãoescalaC

),,()(),(

Page 23: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Podemos também definir a Transformada Wavelets contínua em F(a,b) como:

onde as variáveis a e b são valores reais– a é um parâmetro de escala (contração ou

dilatação) e b é um parâmetro de localização (deslocamento)

A função Ψa,b(t) é denominada wavelet e definida como:

dtttfbaF ba )()(),( ,

energiadaonormaizaçãaRbaa

btaba ,,01

,

Page 24: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets Parâmetro de escala

– A Análise de Wavelet produz um sinal no domínio tempo escala.

– O que significa o fator de escala aplicada a um sinal?

– Observa-se na figura que o fator escala a representa uma contração ou dilatação no sinal Para a>1 a função sofre uma dilatação Para a<1 obtemos uma contração do sinal.

Page 25: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets Se pensarmos em termo da função wavelet, vamos obter o

mesmo efeito de contração ou dilatação da função

Assim, quanto menor for a escala, mais comprimida será a função Wavelet, e vice-versa. Então, existe uma relação entre a escala e a freqüência revelada pela Análise de Wavelet– Baixa escala wavelet comprimida => Detalhes

mudando rapidamente => Alta freqüência .– Alta escala wavelet dilatada => Características globais

mudando lentamente => Baixa freqüência .

Page 26: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets Parâmetro de Posição ou Deslocamento

– O que significa translação?– Transladar uma Transladar uma waveletwavelet significa deslocá-la no eixo do significa deslocá-la no eixo do

tempo.tempo.– O fator de deslocamento ou de translação da função

na Análise de Wavelet é medido pela variável k– o deslocamento de uma função f(t) por k pode ser

representado, matematicamente, pela equação f(t-k)

Page 27: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets A idéia fundamental da Transformada de

Wavelet é que ela é uma transformada pontual e proporcional à escala. Ela analisa o sinal em escalas diferentes e se desloca analisando cada trecho do sinal.

O parâmetro translação se relaciona com a localização da “janela”. Analisa-se o sinal aos poucos. Este termo corresponde, obviamente à informação de tempo no domínio da transformada.

Processa-se essencialmente o conteúdo que estiver dentro da janela

Page 28: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets O escalonamento é o processo de

compressão e dilatação do sinal. O parâmetro de escala "a" usado em Wavelets tem interpretação grosso modo idêntica à escala empregada em mapas cartográficos. As altas escalas correspondem a uma visão global do sistema, enquanto que as baixas escalas correspondem a uma visão mais detalhada.

As Wavelets são versões transladadas (b) e dilatadas/comprimidas (a) de uma mesma onda protótipo, chamada wavelet-mãe Ψ (t).

Page 29: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada WaveletsTransformada Wavelets

Wavelet-mãe em diferentes escalas e localizações

Page 30: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada Wavelet Transformada Wavelet DiscretaDiscreta A transformada wavelet contínua é calculada

fazendo translações e escalonamentos contínuos de uma função sobre um sinal

Na prática esta transformada não seria muito útil, pois teria que realizar infinitas translações e escalonamentos, requerendo muito tempo e recursos computacionais e gerando muita redundância.

Para superar este obstáculo foram introduzidas as wavelets discretas. Elas não são transladadas nem escalonadas continuamente, e sim em intervalos discretos. Isto pode ser feito com uma pequena modificação na wavelet contínua.

Page 31: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada Wavelet DiscretaTransformada Wavelet DiscretaO cálculo da Transformada Wavelet

discreta com base da Transformada Wavelet Contínua com parâmetros de escala e translação discretos é expresso da seguinte forma:

sendo que

Page 32: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada Wavelet DiscretaTransformada Wavelet Discreta

Onde, s(t) é o sinal contínuo, m,p(t) é a função wavelet com os fatores inteiros (m) de escala e translações (p) discretizados, DWT(m,p) é a transformada wavelet discreta (coeficientes wavelet) s0 é fator discreto escala que deve ser maior que 1 (usualmente s0=2) e 0 é a translação que depende do valor de s0 (neste caso, usualmente 0=1)

Page 33: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada Wavelet DiscretaTransformada Wavelet Discreta

Essa equação é obtida fazendo s0=2 e 0=1 Nestas condições a amostragem do sinal

s(t), no plano tempo-escala, pode ser analisado em um gráfico de amostragem diádico

Page 34: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformada Wavelet DiscretaTransformada Wavelet Discreta

Localização das wavelets discretas na grade diádica

Desta forma, tem-se uma escala de dilatação como uma potencia de dois (am=2m), e passos de translação de um passo de escala de delação (bp=2m p=am,p)

Page 35: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Tipos de WaveletsTipos de Wavelets Existem vários tipos de wavelets citados na

literatura. O uso de uma ou outra está associado à aplicação.

Regras de construção de wavelets estão sendo propostas por vários pesquisadores, segundo as restrições e necessidades que cada aplicação específica impõe.

Isto nos leva a concluir que podemos gerar uma infinidade de wavelets diferentes, e particularmente construir um conjunto de wavelets adequado ao processamento de um tipo de sinal ou aplicação específica, levando à obtenção de resultados melhores.

Page 36: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Wavelets de Haar Wavelets de Haar UnidimensionalUnidimensional

Para entender como as wavelets funcionam, vamos começar com um exemplo simples. Suponhamos uma seqüência de uma dimensão com uma resolução de quatro pixes, tendo valores.

Para entender como representar esta seqüência na base de Haar computando sua Transformada Wavelet.

Para fazer isto, calculamos primeiro a média dos valores em pares, obtendo os novos valores de menor resolução da imagem,

Page 37: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Wavelets de HaarWavelets de Haar UnidimensionalUnidimensional

Claramente, um pouco da informação foi perdida neste processo de cálculo da média.

Para recuperar os valores dos pixeis originais a partir dos valores de média, precisamos armazenar alguns coeficientes de detalhes, que capturam a informação perdida.

Em nosso exemplo, escolheremos 1 para o primeiro coeficiente de detalhe, como a média que computamos está 1 a menos que 9 e 1 a mais que 7.

Este único número nos permite recuperar os primeiros dois pixeis de nossa imagem original de quatro pixeis. Semelhantemente, o segundo coeficiente de detalhe é -1, pois 4 + (-1) = 3 e 4 - (-1) = 5.

Assim, a imagem original foi decomposta em uma versão de resolução mais baixa (dois pixeis) e um par de coeficientes de detalhes. Repetindo este processo recursivamente até a decomposição completa

Page 38: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Wavelets de HaarWavelets de Haar UnidimensionalUnidimensional

Considera-se uma imagem 1D 4-pixel [ 9 7 3 5]

[ 9 7 3 5]

(9 + 7)/2 (3 + 5)/2

[ 8 4 ](9 - 7)/2 (3 - 5)/2

[ 1 -1 ]

Average

(smoothing)

Detail coefficients

(edge detection)

(8 + 4)/2

6

(8 – 4)/2

2

[ 6 2 1 -1 ]

TW

Page 39: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

[9 7 3 5 ]

[8, 4] [1, -1]

[6] [2]

----4

2

1

Resolução Médias Coeficientes deDetalhes

Wavelets de HaarWavelets de Haar UnidimensionalUnidimensional

Decomposição wavelet Haar [6, 2, 1, -1]

Page 40: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Wavelets de HaarWavelets de Haar UnidimensionalUnidimensional

Assim definiremos a Transformada de Wavelet (também chamada de decomposição de wavelet) da imagem original de quatro pixeis com a simples representação da média global da imagem original, seguido pelos coeficientes de detalhe em ordem de resolução crescente.

Para a base de Haar unidimensional, a transformada de wavelet da nossa imagem original de quatro pixeis é dada por:

[6, 2, 1, -1]

Page 41: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução A análise de multirresolução em wavelets foi formulada em

1986, em trabalhos de Mallat e Meyer. O método consiste em representar funções como um conjunto de coeficientes que fornecem informação sobre a posição e a freqüência da função em resoluções diferentes.

A multiresolução é bastante útil para análise de imagens. Ela permite que objetos difíceis de serem identificados em uma determinada resolução possam ser identificados a partir de uma resolução mais apropriada, (mais alta ou mais baixa).

Em uma imagem, esses objetos são entendidos como regiões que possuem texturas ou pixels com intensidades semelhantes.

Objetos maiores possivelmente não necessitam de uma resolução muito alta para serem identificados, já para objetos pequenos uma resolução alta pode ser necessária. A idéia é poder transitar entre diferentes resoluções em busca de melhores análises.

Page 42: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Levando em considerações que a

transformada Wavelets é uma projeção sobre um conjunto de dados não ortogonais, Ingrid Daubechies desenvolveu um trabalho que trata de decomposição em uma série de Wavelets ortogonais.

Logo depois, Stephane Mallat desenvolveu uma nova abordagem chamada “Multiresolução” que se tornou uma ferramenta fundamental na teoria de sianais e fornece recursos poderosos para computar a transformada Wavelets de uma imagem

Page 43: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução De ponto de vista teórico, uma multiresolução define

operadores lineares que permitem analisar um sinal em diferentes escalas

Além disso, pode-se dizer que a construção de uma multiresolução é realizada por uma função escala que se dilata através as escalas

O sinal projetado sobre essa função fornece uma representação do sinal de origem numa escala superior

Essa representação (coeficiente de projeção) é conhecida como termo de aproximação

Afim de reconstruir o sinal a partir dos coeficientes de aproximação, deve-se também projetar o sinal original sobre um espaço perpendicular (conservação de toda informação)

Esta segunda projeção contém os detalhes do sinal de origem

Page 44: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução De modo geral, pode-se dizer que a função escala é um

filtro passa-baixa e a Wavelets é um filtro passa-alta. Os detalhes são portanto as altas freqüências do sinal e essas altas freqüências são muitos importantes em processamento de imagens

Existem diferentes aplicações na área de Processamento de Imagens como por exemplo:– Detecção de contornos multiescalas– Eliminação do ruído (Denoising)– Compressão (1D e 2D)

Page 45: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Matematicamente, este conceito pode ser

compreendido a partir da utilização de subespaços formados tanto pelas funções de escala quanto pelas wavelets

Partindo de um sinal de nitidez (ou refinamento j), que pertence a um subespaço Vj, verifica-se que para representar uma função L2(R) é necessário que:

onde a união de todos subespaços é L2(R)

e a interseção entre eles é o espaço vazio

)1(... 210121 VVVVVVV jj

)2()(2n

n RLV

)3(0Zj

Vj

Page 46: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Por exemplo, uma função f(t) pode ser projetada

em cada passo j no subespaço Vj de acordo com a equação (1)

Segundo as equações (1) (2) e (3), se uma função esta definida em um subespaço Vj, a função f(2t) passa a ser definida em um subespaço Vj+1, tal que:

Os subespaços são gerados pelas translações da função escala

Assim, a relação deve ser satisfeita

1)2()( jj VtfVtf

jj VtfVtf )1()(

Page 47: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Isso significa que a função escala (t) e suas

translações internas (t-1) formam a base do subespaço Vj-1

Assim, essa função se define como a combinação linear de (2t-k) o que garante Vj-

1Vj

O conjunto de funções j,k formam uma base do subespaço Vj e são obtidos através de operações de dilatação j e translação k

Page 48: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução A função que gera uma multiresolução é uma

função escala L2(R) No caso diádico, a função escala é definida por

O projetor é então

O produto interno

representa a aproximação do sinal na escala j

Zkktjjkj )2(2 2/

,

kjkjjf fA ,,,

kjj

k fc ,,

Page 49: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Para complementar esta análise, necessita-se de

um subespaço complementar Wj ortogonal a Vj, este espaço se chama espaço dos detalhes ou espaço Wavelets (formados pelas Wavelets (t))

Estes subespaços que constituem uma base ortonormalizada em L2(R) a um dado nível de resolução j (escala j) podem ser definidos como o complemento ortogonal (Vj

c) de Vj em Vj+1 É o complemento que necessário para passar de

um nível de resolução j para um nivel de resolução j+1

Matematicamente, isso é definido como jjj WVV 1

Page 50: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Deste modo, pode-se definir

que pode ser estendido para

ou seja

sendo arbitraria a escala j do espaço inicial.

Análise MultiresoluçãoAnálise Multiresolução

Page 51: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Com isso, pode-se dizer que o subespaço Wj contém o

detalhe ou informação necessária para se passar de uma aproximação de resolução j para uma de j+1.

Portanto, os subespaços de aproximação Vj e os subespaços de detalhes Wj são ortogonais o que permite afirmar que toda informação do sinal é conservada

Conseqüentemente, pode-se reconstruir exatamente o sinal

Graficamente, isso pode ser representado da seguinte forma

Page 52: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução A função que gera Wj é uma Wavelet

O operador linear é então

O produto interno

representa os detalhes do sinal na escala j

Zkktjjkj )2(2 2/

,

kjkjjf fD ,,,

kjj

k fd ,,

Page 53: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução

A análise multi-resolução estabelece uma relação entre os coeficientes de aproximação e detalhes, da análise Wavelet, partindo de uma escala arbitrária, que permite decompor e reconstruir o sinal através da transformada Wavelet rápida.

Em cada nível de decomposição, a soma da aproximação e os detalhes correspondem ao sinal aproximado no nível anterior de decomposição. No esquema de discretização diádico a resolução se reduz à metade após cada nível de decomposição.

– Estudar o sinal em diferentes escalas temporais, para eliminação de ruído e detecção de singularidades

– Reconstruir o sinal após a modificação dos coeficientes, segundo o critério de filtragem apropriado para cada circunstância.

Page 54: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Análise MultiresoluçãoAnálise Multiresolução Para a análise de multiresolução, o conceito

de escala é bastante importante. Diferentes escalas permitem a visualização de diferentes detalhes de um objeto observado.

Em um mapa, usando uma escala pequena, são percebidas características macroscópicas da região detalhada, enquanto que em escalas maiores podem ser representados detalhes menores.

Qualquer função definida em Vj pode ser expressa como combinação linear das funções que constituem a base do subespaço Vj+1.

Page 55: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Funções bases de Wavelet de Haar Unidimensional

Mostramos como uma imagem unidimensional pode ser considerada como uma seqüência de coeficientes.

Alternativamente, podemos pensar em imagens como funções de valores discretos no intervalo de aberto [0, 1).

Desta forma, usaremos o conceito de um espaço vetorial. Uma imagem de um pixel é apenas uma função constante em todo o intervalo [0, 1).

Considerando V0 o vetor espaço de todas estas funções. Uma imagem de dois pixeis tem dois segmentos constantes nos intervalos [0, 1/2) e [1/2, 1).

Page 56: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Funções bases de Wavelet de Haar Unidimensional

Chamando todo o espaço, contendo estas funções, de V1. Se continuarmos desta maneira, o Vj espaço incluirá todas as funções constantes definidas no intervalo [0, 1) com pedaços constantes em cada subintervalo igual de 2j, onde j é o número de funções contidas do espaço.

Podemos pensar agora em toda imagem unidimensional com 2j pixeis como um elemento, ou vetor, em Vj. Nota-se que estes vetores são todos das funções definidas no intervalo unitário, todo vetor em Vj está contido em Vj+1.

Page 57: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Funções bases de Wavelet de Haar Unidimensional

Page 58: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Algoritmo de MallatAlgoritmo de Mallat Este algoritmo é esquematizado da

seguinte maneira:

Page 59: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Algoritmo de MallatAlgoritmo de Mallat O sinal x(n) é decomposto por dois filtros de análise LA (filtro baixas

freqüências) e HA (filtros altas freqüências) para fornecer dois vetores respectivamente CA (Coeficientes de wavelet de aproximação) e CD (Coeficientes de wavelet de detalhes). Todos os dois são de tamanho aproximadamente igual a metade do vetor de origem. Isso é devido ao fato da operação de decimação por 2 (downsanpling).

A reconstrução perfeita teoricamente possível é descrita assim. Os dois vetores CA e CD, passando por um processo de amostragem (upsampling) depois um filtragem respectivamente pelos filtros LR (filtro passa-baixa de reconstrução) resultam na soma do vetor de origem x(n).

Essa decomposição/reconstrução é chamada decomposição/reconstrução em banco de filtros. Ela é característica aos sinais unidimensionais. O quádruplo (LA,HA, LR e HR) forma uma banco de filtros espelhos em quadratura.

Page 60: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Algoritmo de Mallat 2DAlgoritmo de Mallat 2D

Page 61: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Algoritmo de MallatAlgoritmo de Mallat Esta arquitetura é adaptada para análise de sinais bidimensionais e principalmente imagens. Após uma decomposição de uma imagem (por exemplo) NxM e após a decimação, quatro sub-imagens resultam em denotando C (Coeficientes de aproximação), CH (Coeficientes de detalhes horizontais), CV (Coeficientes de detalhes verticais) e CD (Coeficientes de detalhes verticais). A reconstrução é a operação similar mas inversamente.

Page 62: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Algoritmo de MallatAlgoritmo de Mallat Em processamento de imagens, as transformadas

bidimensionais sao aplicadas por um conjunto de Quadrature Mirror Filters (QMF), formado por dois filtros L (passa -baixa) e H (passa - alta).

A aplicação dos (QMF) sobre uma imagem nas direções vertical e horizontal gera um nível de decomposição e produz quatro sub-bandas, LL, LH, HL e HH

Este processo pode ser aplicado recursivamente na sub-banda LL.

Page 63: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais As transformações bidimensionais em imagens

são em sua maioria obtidas a partir de transformações unidimensionais aplicadas separadamente nas direções vertical e horizontal.

Assim, as wavelets sao facilmente estendidas para imagens pelo produto de funções de escala e wavelets. Os produtos geram uma função de escala

e três funções wavelets

Page 64: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais As transformadas wavelets bidimensionais

obtidas pelo produto das funções unidimensionais são chamadas separáveis.

Essas funções wavelets medem variações em diferentes direções:– (x, y)H mede variações horizontais, – (x, y)V mede variações verticais– (x, y)D mede variações nas diagonais.

As funções de base agora são denotadas por um parâmetro de escala j e parâmetros k e l para as translações horizontal e vertical, respectivamente,

Page 65: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais

A aplicação dos filtros sobre uma imagem nas direções vertical e horizontal gera um nível de decomposição e produz quatro sub-bandas, LL, LH, HL e HH

A decomposição pode ser realizada recursivamente na sub-banda LL, obtendo níveis adicionais de decomposição.

Page 66: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais

Page 67: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais

Page 68: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Transformadas bidimensionais As sub-bandas LL e HH denotam,

respectivamente, as freqüências baixas e altas da imagem, enquanto LH e HL descrevem as freqüências intermediárias presentes na imagem.

As sub-bandas LH, HL e HH correspondem às imagens de detalhe; enquanto que a sub-banda de baixa freqüências , LL, é a aproximação da imagem em uma resolução menor, estando relacionada à informação espacial.

Page 69: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Decomposição em1 nível da imagem

LL HL

LH HH

Coeficientes deAproximação

DetalhesHorizontais

DetalhesVerticais

DetalhesDiagonais

Decomposição WaveletsDecomposição Wavelets

Page 70: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Decomposição WaveletsDecomposição Wavelets

Decomposição em2 níveis da imagem

LL HL

LH HH

HL

HHLH

Page 71: Prof. Dr. Kamel Bensebaa Processamento de Imagens Aula 10.

Decomposição WaveletsDecomposição Wavelets