MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O...

19
Universidade Federal Rural do Semi-Árido Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected] UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS Dinâmica dos Fluidos Elementar Equação de Bernoulli JATO LIVRE Prof. Roberto Vieira Pordeus Mossoró-RN

Transcript of MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O...

Page 1: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

UNIVERSIDADE FEDERAL RURAL DO SEMI-ÁRIDO DEPARTAMENTO DE CIÊNCIAS AMBIENTAIS

FENÔMENOS DE TRANSPORTE MECÂNICA DOS FLUIDOS

Dinâmica dos Fluidos Elementar

Equação de Bernoulli

JATO LIVRE

Prof. Roberto Vieira Pordeus

Mossoró-RN

Page 2: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Jato Livre

Uma das equações mais antigas da mecânica dos fluidos é aquela que descreve

a descarga de líquido de um grande reservatório (veja a Fig.). Um jato de líquido,

com diâmetro d, escoa no bocal com velocidade V. A aplicação da Equação de

Bernoulli entre os pontos ( 1 ) e ( 2 ) da linha de corrente fornece

22221

211 2

121 zVpzVp γργρ ++=++ ( 1 )

221 Vh ργ =

Figura. Escoamento vertical no bocal de um tanque

Nós utilizamos a hipótese que z1 = h, z2 = 0, que o reservatório é grande

(V1 = 0) e está exposto à atmosfera (p1 = 0) e que o fluido deixa o bocal como um

jato livre (p2 = 0). Assim,

hghV 22 ==ργ

( 2 )

Esta equação é uma versão moderna do

resultado formulado em 1643 pelo físico italiano

Torricelli (1608-1647).

Figura. Escoamento horizontal no bocal de um tanque

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

2

Page 3: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

O escoamento se comporta como um jato livre, com pressão uniforme e igual a

atmosférica (p5 = 0), a jusante do plano de descarga do bocal. Aplicando a equação

( 1 ) entre os pontos ( 1 ) e ( 5 ) nós identificamos que a velocidade aumenta de

acordo com

( )HhgV += 2 ( 3 )

onde H é a distância entre a seção de descarga do bocal e o ponto ( 5 ).

Escoamento Confinado

É comum encontrarmos situações onde o escoamento está confinado

fisicamente (por exemplo, por paredes) e a pressão não pode ser determinada a

priori como no caso do jato livre. Dois exemplos típicos destas situações são os

escoamentos nos bocais e nas tubulações que apresentam diâmetro variável. Note

que, nestes casos, a velocidade média de escoamento varia porque a área de

escoamento não é constante.

Figura. Escoamento em regime permanente num tanque

Para a resolução destes escoamentos confinados é necessário utilizar o conceito

da conservação da massa (ou equação da continuidade) juntamente com a equação

de Bernoulli.

A vazão em volume é e a vazão em massa é AVQ = VAm ρ= . Para que a

massa no volume considerado permaneça constante, a vazão em massa na seção

de alimentação deve ser igual àquela na seção de descarga. Logo,

222111 VAVA ρρ = ( 4 )

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

3

Page 4: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Se a massa específica do fluido permanecer constante, ρ1 = ρ2, a equação

anterior se torna igual a

212211 QQouVAVA == ( 5 )

Por exemplo, se a área da seção de descarga é igual a metade da área da seção

de alimentação, segue que a velocidade média na seção de descarga é igual ao

dobro daquela na seção de alimentação (i.e., 12112 2VA/VAV == ).

Exemplo 1. A Figura abaixo mostra um tanque (diâmetro D = 1,0 m) que é

alimentado com um escoamento de água proveniente de um tubo que apresenta

diâmetro, d, igual a 0,10 m. Determine a vazão em volume, Q, necessário para que

o nível da água no tanque (h) permaneça constante e igual a 2 m.

Solução: Se modelarmos o escoamento como invíscido, incompressível e em

regime permanente, a aplicação da equação de Bernoulli entre os pontos ( 1 ) e

( 2 ) resulta em

22221

211 2

121 zVpzVp γργρ ++=++ ( 1 )

Admitindo que p1 = p2 = 0, z1 = h e z2 = 0, temos

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

4

Page 5: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

22

21 2

121 VhV ργρ =+ ( 6 )

O nível da água pode permanecer constante (h = constante) porque existe uma

alimentação de água no tanque. A Eq. 5, que é adequada para escoamento

incompressível, requer que Q1 = Q2, onde VAQ = . Assim, 2211 VAVA = , ou

22

12

44VdVD ππ

=

Assim,

2

2

1 VDdV ⎟⎠⎞

⎜⎝⎛= ( 7 )

Combinando as equações ( 1 ) e ( 7 ), obtemos

( )421

2Dd

ghV−

= ( 8 )

Aplicando os dados fornecidos na formulação do problema, temos

( ) ( ) ( )

( )s/m,

,,,,V 266

01101028192

42 =−

=

e

( ) ( ) s/m,,,VAVAQ 322211 0492026610

4====

π

Neste exemplo não foi desprezado a energia cinética da água no tanque

(V1 ≠ 0), se o diâmetro do tanque for muito grande ( ), a velocidade (VdD >> 1)

pode ser considerado igual à zero.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

5

Page 6: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Exemplo 2. A Fig. abaixo mostra o esquema de uma mangueira com diâmetro

D = 0,03 m que é alimentada, em regime permanente, com ar proveniente de um

tanque. O fluido é descarregado no ambiente através de um bocal que apresenta

seção de descarga, d, igual a 0,01 m. Sabendo que a pressão no tanque é

constante e igual a 3,0 kPa (relativa) e que a atmosfera apresenta pressão e

temperatura padrões, determine a vazão em massa e a pressão na mangueira.

Solução: Se nós admitirmos que o escoamento ocorre em regime permanente

é invíscido e incompressível, nós podemos aplicar a equação de Bernoulli ao longo

da linha de corrente que passa por ( 1 ), ( 2 ) e ( 3 ). Assim,

32

3322221

211 2

121

21 zVpzVpzVp γργργρ ++=++=++

Se nós admitirmos que z1 = z2 = z3 (a mangueira está na horizontal), que V1 =

0 (o tanque é grande) e que p3 = 0 (jato livre), temos que

ρ1

32 pV = ( 9 )

2212 2

1 Vpp ρ−= ( 10 )

A massa específica do ar no tanque pode ser obtida com a lei dos gases perfeito

(utilizando temperatura e pressão absoluta). Assim,

( )[ ]( )( )

33

1 261273159286

101013 m/kg,,RT

p=

++

==ρ

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

6

Page 7: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Assim, nós encontramos que

( ) s/m,,.,V 06926110032 3

3 ==

e

( ) ( ) s/m,,,VdVAQ 3323

2333 10425069010

44−====

ππ

O valor de V3 independe do formato do bocal e foi determinado utilizando

apenas o valor de p1 e as hipóteses envolvidas na equação de Bernoulli.

A pressão na mangueira pode ser calculada utilizando a Eq. 10 e a equação da

conservação da massa (Eq. 5).

3322 VAVA =

assim,

( ) s/m,,,,V

DdA/VAV 677069

030010 2

3

2

2332 =⎟⎠

⎞⎜⎝

⎛=⎟⎠⎞

⎜⎝⎛==

e da Eq. 10

( )( ) 2232212 2963677261

211003

21 m/N,,,Vpp =−=−= ρ

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

7

Page 8: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Medida e Controle de Fluidos

Introdução. Numerosos dispositivos são usados na prática para medir o

escoamento de fluidos. As medições de velocidade são feitas com tubos Pitot,

medidores de corrente, anemômetros rotativos e outros. As medições de

vazão são feitas através de orifícios, tubos, bocais, medidores Venturi e

vertedores, cotovelos e numerosas modificações de medidores anacrônicos e de

patentes diversas.

Um método primário é o de medição direta de volume em certo tempo. A fim

de se aplicar inteligentemente os dispositivos hidráulicos, é necessário fazer uso da

equação de Bernoulli e do conhecimento adicional das características e

coeficientes de cada dispositivos. As fórmulas desenvolvidas para fluidos

incompressíveis poderão ser usadas para fluidos compressíveis onde o diferencial

de pressão é muito pequeno em relação à pressão total.

Coeficiente de descarga. O coeficiente de descarga ( c ) é a relação da

descarga real através do dispositivo para a descarga ideal.

Este coeficiente pode ser expresso como:

HgAQ

QidealfluxoQatualfluxoc

2==

Quando o coeficiente de descarga ( c ) for determinado experimentalmente,

HgAcQ 2= (m3 s-1)

onde A = seção reta do dispositivo (m2)

H = altura de carga total que causa o escoamento, em metros de fluido

O coeficiente de descarga também poderá ser escrito em termos do coeficiente

de velocidade e do coeficiente de contração, a saber,

cv c.cc =

O coeficiente de descarga não é constante. Para um dado dispositivo, ele varia

com o número de Reynolds.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

8

Page 9: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Coeficiente de velocidade. O coeficiente de velocidade ( cv) é a razão da

velocidade média real na seção reta de um fluxo (jato) para a velocidade média

ideal que ocorreria se não houvesse atrito.

Hg

Vcv 2ideal média velocidadeatual média velocidade

==

Coeficiente de contração. O coeficiente de contração ( cc ) é a relação da

área da seção contraída de um fluxo (jato) para a área da abertura através da qual

o fluido se escoa.

( )

o

jatoc A

Ac ==

abertura da áreajato fluxo do área

Perda de carga. A perda de carga em orifícios, tubos, bocais e medidores

Venturi é expressa como:

( )g

V

cfluidodometroemaargCdePerda jato

c 211 2

2 ⎟⎟⎠

⎞⎜⎜⎝

⎛−=

Quando esta expressão é aplicada a um medidor Venturi, Vjato = velocidade na

garganta e, cv = c.

Equacionamento básico. O equacionamento básico é válido para os aparelhos

medidores de vazão, que propiciam um aumento de energia cinética em

conseqüência da diminuição de pressão estática.

As variações são originadas por uma variação de área transversal, como

observado no tubo Venturi, nos bocais de fluxo e nas placas de orifício.

Medidores de Diferencial de Pressão. O princípio de funcionamento baseia-

se no uso de uma mudança de área de escoamento, através de uma redução de

diâmetro ou de um obstáculo, ou ainda através de uma mudança na direção do

escoamento. Estas mudanças

de área ou de direção provocam uma aceleração local do escoamento,

alterando a velocidade e, em conseqüência, a pressão local. A variação de pressão

é proporcional ao quadrado da vazão. São medidores já bastante conhecidos,

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

9

Page 10: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

normalizados e de baixo custo. Estima-se que abranjam 50% de utilização na

medição de vazão de líquidos.

São compostos de um elemento primário e um elemento secundário. O

elemento primário está associado à própria tubulação, interferindo com o

escoamento e fornecendo o diferencial de pressão. O elemento secundário é o

responsável pela leitura deste diferencial e pode ser um simples manômetro de

coluna líquida, em suas diferentes versões, ou até mesmo um transdutor mais

complexo, com aquisição e tratamento eletrônico do valor de pressão lido.

Equação para o Cálculo da Vazão. As equações para o cálculo da vazão

podem ser obtidas genericamente para os medidores que apresentam variação de

pressão e velocidade. Aplica-se a Equação de Conservação da Massa, bem como a

Equação da Conservação da Energia, sendo esta última na sua forma simplificada,

que é a Equação de Bernoulli. Assim para o escoamento através de uma redução de

área, considerando-o ideal e tomando uma linha de corrente entre os pontos 1 e 2,

conforme a Figura 1.

Figura. Escoamento com estrangulamento

A equação de Bernoulli aplicada ao escoamento ideal, entre os pontos 1 e 2 da

figura, resulta na equação seguinte:

22

22

11

21

22zp

gvzp

gv

++=++ρρ

onde o primeiro termo representa a energia cinética, o segundo a energia de

pressão, proveniente do trabalho de escoamento, enquanto o terceiro termo

representa a energia potencial. Idênticas parcelas existem do lado direito da

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

10

Page 11: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

equação, para o ponto 2. Esta igualdade significa que a soma das três parcelas é

uma constante ao longo de uma linha de corrente, não havendo perdas por atrito.

Através da equação da continuidade, obtemos a equação seguinte,

22

2

1

221 v

AAv ⎟⎟

⎞⎜⎜⎝

⎛=

Das duas equações acima, obtemos a velocidade teórica na seção (2), que é

representada pela equação

( ) ⎥⎦

⎤⎢⎣

⎡ −+−

⎟⎟⎠

⎞⎜⎜⎝

⎛−

21212

1

2

2 2

1

1 ppZZg

AA

v t

MEDIDORES. A normalização dos medidores de vazão permite que se construa

um destes medidores sem a necessidade de uma calibração do mesmo, recorrendo-

se aos valores publicados do coeficiente de correção (cc).

A obtenção dos coeficientes de correção para todos os medidores requer um

trabalho extenso, com a utilização de medidores de diferentes tamanhos, em suas

amplas faixas de vazão. Deste modo há interesse no medidor que possua um

coeficiente de correção o mais constante possível, o que facilita na obtenção,

apresentação e utilização de seus valores. Em geral tem-se o coeficiente como

função da relação de diâmetros β e do número de Reynolds.

Tubo de Pitot. É um instrumento utilizado para a medição de velocidade de

escoamento, tanto internos quanto externos, para liquido ou gases. O tubo de Pitot

indica a velocidade em um ponto, em virtude do fato de que ele mede a pressão de

estagnação que excede a pressão local estática de ( )[ ]g/V 22ρ . Em um

escoamento aberto, uma vez que a pressão manométrica é nula, a altura que o

liquido sobe no tubo mede a taquicarga ou pressão cinética.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

11

Page 12: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Pressão estática. É a pressão real ou a pressão termodinâmica que atua no

fluido.

Pressão Dinâmica. É a pressão decorrente da transformação da energia

cinética do fluido em pressão, através de uma desaceleração isoentrópica do

mesmo.

Pressão Total, de Impacto ou de Estagnação. É a soma da pressão estática

com a dinâmica. A sua medição é feita através de uma tomada de pressão voltada

contra o escoamento e alinhada com a linha de corrente, de forma a receber o

impacto do fluido.

Tubo de Venturi. Este é constituído por uma entrada cilíndrica, de uma seção

convergente (cone de entrada), uma segunda região cilíndrica (garganta ou

entrangulamento) e um cone divergente (difusor). Após este último cone, há um

encaixe com a tubulação normal. As tomadas de pressão são colocadas na entrada

e na garganta, conforme figura abaixo. A relação entre os diâmetros podem variar

de 0,3 e 0,7, sendo o mais comum o valor médio de 0,5. As tomadas de pressão

situam-se no meio de cada parte cilíndrica do medidor.

Figura. Tubo de Venturi

Observa-se que, o tubo de Venturi, causador de menor perda de carga, tem

uma utilização mais restrita, provavelmente em virtude de seu formato, que

necessita de usinagens internas mais complicadas, comparadas com outros

medidores.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

12

Page 13: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

13

Placa de Orifício. De concepção mais simples que o tubo de Venturi, este

medidor é formado por uma placa com um orifício, instalada transversalmente à

tubulação, de modo a causar uma mudança brusca de seção. Esta mudança brusca

de seção implica em uma aceleração do escoamento principal, com o aparecimento

de regiões de escoamento secundário, antes e depois da placa. O escoamento

principal possui um diâmetro igual ao do orifício da placa, mas em função da

separação, sofre uma redução de seção ainda maior a jusante da placa. Forma-se

então a “vena contracta”, conforme a Figura 1. Esta é a região de menor diâmetro,

de maior velocidade e de menor pressão.

Bocais de Fluxo. É um dispositivo que apresenta uma redução progressiva de

área, de modo a apresentar o jato de saída já no seu diâmetro final, sem a

formação da vena contracta. Este tipo de medidor de vazão é praticamente

intermediário, tanto em relação a custo, como em relação a dissipação de energia

comparado ao tipo Venturi e ao tipo placa de orifício. Bocal ou tubo adicional é um

tubo curto adatado a um orifício. Tem, quase sempre, secção transversal circular e

é disposto normalmente à parede dos reservatórios. Serve para regularizar e dirigir

o jato. O seu comprimento deve estar compreendido entre 1,5D d 5,0D (sendo D o

diâmetro).

Os bocais geralmente são classificados em: cilíndricos: interiores e exteriores;

cônicos: convergentes e divergentes.

Dois padrões são os mais utilizados: os bocais ASME (EUA), que possuem um

arredondamento elíptico, e os bocais ISA (Europa), com arredondamento pseudo-

elíptico. Este último é formado pela combinação de dois arredondamentos

circulares.

Vertedores. Os vertedores são simples aberturas sobre os quais um líquido se

escoa. Os vertedores são utilizados na medição da vazão de pequenos cursos

d’água e canais, assim como no controle do escoamento em condutos livres. Os

vertedores medem o fluxo de líquidos em canais abertos, usualmente água. O

número de equações empíricas encontrada na literatura especializada é bastante

considerável, cada uma delas com suas limitações. Muitos vertedores são

retangulares: os vertedores submersos sem contração alguma, geralmente usados

para grandes escoamentos, e vertedores contraídos, para pequenos escoamentos.

Outros tipos de vertedores são triangular, trapezoidal, parabólico e de escoamento

proporcional. Para resultados de precisão o vertedor deveria ser calibrado no lugar,

sob condições para as quais foi planejada sua utilização.

Page 14: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

O principal problema prático de um vertedor é a determinação de sua lei de

vazão, isto é, (HfQ )= . Entre outros, têm influência na vazão, os seguintes

fatores: carga, forma do vertedor, forma da soleira, rugosidade das paredes, altura

p do vertedor, nível d’água à jusante p’, ventilação sob a veia efluente, forma da

veia líquida efluente.

Entre as várias equações de vertedores podemos citar como as mais utilizadas

as de Francis, Bazin e Renbock.

1. A tubulação de 2 cm de diâmetro da Figura abaixo é usada para transportar

água a 20°C. Qual é a velocidade média máxima que pode existir na tubulação,

para a qual é garantido um escoamento laminar?

RESOLUÇÃO: v

VDRe =

A viscosidade cinemática é encontrada no Apêndice B como sendo v = 10-6 m2/s.

Usando o número de Reynolds de 2000, garantindo assim, um escoamento laminar,

temos D

V =v2000

m/s10020

102000 6x ,,

V ==−

Esta velocidade média é bem pequena. Velocidades assim pequenas não são

geralmente encontradas em situações reais.

EQUAÇÃO DE BERNOULLI

22

22

11

21

22ghPVghPV

++=++ρρ

(1)

Esta é a conhecida equação de Bernoulli, em homenagem a Daniel Bernoulli (1700-

1782).

Note as suposições:

Escoamento não-viscoso (não há tensões de cisalhamento)

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

14

Page 15: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Escoamento permanente ( )0=∂∂ tV

Ao longo de uma linha de corrente ( )sVVas ∂∂=

Massa específica constante ( )0=∂∂ sρ

Referência inercial ( )angular e velocidadde Eq.naaA =

Se a Equação 1 é dividida por g, ela se torna

22

22

11

21

22hP

gVhP

gV

++=++γγ

A soma dos dois termos ( hp + )γ é chamada de carga piezométrica e a soma dos

três termos é a carga mecânica total. A pressão p é muitas vezes chamada de

pressão estática, a soma dos dois termos

TpVp =+2

É chamada de pressão total pT ou pressão de estagnação, a pressão em um

ponto de estagnação.

Pressão estática: Pressão p, geralmente expressa como pressão manométrica.

Figura. Medidores de pressão: ( a ) tubo piezométrico; ( b ) tubo de pitot; ( c )

tubo de pitot estático

Tubo piezométrico: Medidor projetado para medir pressão estática.

Tubo de pitot: Medidor projetado para medir a pressão total.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

15

Page 16: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Tubo de pitot estático: Medidor projetado para medir a diferença entre a pressão

total e a pressão estática.

2. A carga de pressão estática em uma tubulação de ar (figura abaixo) é medida

com um tubo piezométrico e acusa 16 mm de água. Um tubo pitot na mesma localização indica 24 m

Solução: A equação de Bernoulli é aplicada entre dois pontos de uma linha de

corrente que termina no ponto de estagnação do tubo de pitot. O ponto 1 está

corrente a montante e p2 é a pressão total no ponto 2; então, sem nenhuma

mudança na elevação.

γγTPP

gV

=+ 12

12

A pressão medida com o tubo piezométrico é

Pa15701609810 x1 === ,hp γ .Usando a lei de gás ideal para calcular a

densidade:

( )3

xkg/m2031

20273287000101157 ,

RTp

=+

+==ρ

Em que a pressão padrão atmosférica padrão, que é 101 000 Pa (se nenhuma

elevação é dada, assumir condições normais) é somada já que a pressão absoluta é

necessária na equação anterior. As unidades são verificadas usando-se Pa = N/m2 e

J = N . m. Então, a velocidade é

( )112 ppV T −=ρ

( ) m/s4211

20319810016002402 x

1 ,,

,,V =−

=

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

16

Page 17: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

Em que as unidades podem ser verificadas usando kg = N.s2/m. Para encontrar o

número de Mach, demos calcular a velocidade do som, dada por

kRTc=

m/s34329328741 xx == ,c

O número de Mach é, então,

03340343

4411 ,,cVM ===

Obviamente o escoamento pode ser assumido como incompressível, já que M <

0,3. A velocidade teria de ser maior antes que a compressibilidade fosse

significativa.

3. Considere o escoamento de ar em torno do ciclista que se move em ar

estagnado com velocidade V0 (veja Figura).

Determine a diferença entre as pressões nos

pontos (1) e (2) do escoamento.

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

17

Solução: Para um sistema de coordenadas

fixo na bicicleta, o escoamento de ar ocorre

em regime permanente e com velocidade ao

longe igual a V0. Se as hipóteses utilizadas na obtenção da equação de Bernoulli

são respeitadas (regime permanente, escoamente incompressível e invíscido), a

equação para solucionar o problema é,

2221

211 2

1221 hVphVp γργρ ++=++

Nós vamos considerar que o ponto (1) está posicionado suficiente longe do ciclista

de modo que V1 = V0 e que o ponto (2) está localizado na ponta do nariz do

ciclista. Nós ainda vamos admitir que h1 = h2 e V2 = 0 (estas duas hipóteses são

razoáveis). Nestas condições, a pressão em (2) é maior que a pressão em (1), ou

seja,

20

2112 2

121 VVpp ρρ ==−

Page 18: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

4. A Figura mostra um avião voando a 160 km/h numa altitude 3000 m.

Admitindo que a atmosfera seja a padrão, determine a pressão ao longo do avião,

ponto (1), a pressão no ponto de estagnação no nariz do avião, ponto (2), e a

diferença de pressão indicada pelo tubo de pitot que está instalado na fuselagem

do avião.

Solução: Nós encontramos na Tab. C.1 os valores da pressão estática e da massa

específica do ar na altitude fornecida, ou seja,

p1 = 70,12 kPa e ρ = 0,9093 kg / m3

Nós vamos considerar que as variações de elevação são desprezíveis e que o

escoamento ocorre em regime permanente, é invíscido e incompressível. Nestas

condições, resulta na aplicação da equação de Bernoulli,

2221

211 2

1221 hVphVp γργρ ++=++

TpVp =+ 211 2

1 ρ

Com V1 = 160 km/h = 44,4 m/s e V2 = 0 (porque o sistema de coordenadas está

solidário ao avião), temos

( ) ( )absPa100271Pa109681012702

44490930101270 3x2x3x2x3x ,,,,,,pT =+=+=

Em termos relativos, a pressão no ponto (2) é igual a 0,896 kPa e a diferença de

pressão indicada pelo tubo de Pitot é

kPa,Vpp 896021 2

112 ==− ρ

5. Por um canal escoa água com uma profundidade de 4 ft (1,22 m) e uma

velocidade de 8,02 ft/s (2,44 m/s). A água escoa por uma rampa para outro canal

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

18

Page 19: MECNICA DOS FLUIDOS - ufersa.edu.br. IV... · Universidade Federal Rural do Semi-Árido O escoamento se comporta como um jato livre, com pressão uniforme e igual a atmosférica (p

Universidade Federal Rural do Semi-Árido

onde a profundidade é 2 ft (0,61 m) e a velocidade de 40,1 ft/s (12,22 m/s).

Adotando escoamento sem atrito, determinar a diferença de cotas entre os fundos

dos canais.

Solução:

Se a diferença de cotas entre os fundos dos canais é h, então a equação de

Bernoulli, entre a superfície superior e a inferior da água, pode ser escrita como,

22

22

11

21

22hP

gVhP

gV

++=++γγ

Onde V1 e V2 são as velocidades médias. Com a pressão atmosférica nula como

referência e o fundo do canal inferior como plano de referência, então h1 = h + 4,

h2 = 2, V1 = 8,02, V2 = 40,1, p1 = p2 = 0 e

( ) ( ) 20

214040

2028 22

++=+++g,h

g,

(6,7m)ft22=h

Notas de aula – Fenômenos de Transporte - Mecânica dos Fluidos – Medição de Vazão Departamento de Ciências Ambientais. Prof. Roberto Vieira Pordeus, [email protected]/[email protected]

19