Isometrias.. Isometrias Isometria é uma palavra de origem grega Isos = igual metria = medida.

Post on 22-Apr-2015

137 views 1 download

Transcript of Isometrias.. Isometrias Isometria é uma palavra de origem grega Isos = igual metria = medida.

Isometrias.

Isometrias

Isometria é uma palavra de origem grega

Isos = igual

metria = medida

Exemplos de isometrias

As isometrias são utilizadas, pela beleza que as repetições ordenadas proporcionam...

na decoração de azulejos, mosaicos, frisos, papéis para decoração.

Isometrias

Mas afinal, como podemos nós obter isometrias?

Translações

Consideremos duas bandeiras sobrepostas.

Translações

Consideremos duas bandeiras sobrepostas.

F1

A

D

B C

Translações

BF1

A

D

Suponhamos que pretendemos deslocar a bandeira da esquerda para a direita na horizontal.

C

Translações

F1

A

D

Vamos deslocar cada vértice da bandeira tendo em conta a «seta» indicada.

B C

Translações

B CF1

A

D

Assim, cada vértice desloca-se segundo um movimento paralelo à seta e com o mesmo sentido e comprimento desta.

C’

A’

B’

D’

Translações

B CF1

A

D

Obtemos então os pontos A’, B’, C’ e D’, que são imagens dos pontos A, B, C e D, respectivamente.

C’

A’

B’

D’

Translações

B CF1

A

D

C’

A’

B’

Unindo os novos pontos obtemos a bandeira F2 com a mesma forma e dimensão da bandeira F1.

D’

Translações

B CF1

A

D

F2C’

A’

B’

Unindo os novos pontos obtemos a bandeira F2 com a mesma forma e dimensão da bandeira F1.

D’

Translações

B CF1

A

D

F2C’

A’

B’

Dizemos que a bandeira F2 é a imagem ou o transformado da bandeira F1.

À transformação ocorrida dá-se o nome de translação.

D’

Vectores

Numa seta podemos considerar três características: a direcção, o sentido e o comprimento.

Desta forma, dizemos que temos definido um vector.

Vectores

À translação anterior temos assim associado o vector que nos permite passar da figura inicial, a bandeira F1 para a nova bandeira F2.

'CC

C C’

Vectores

Observemos que:

Os vectores são todos iguais porque têm a mesma direcção, o mesmo sentido e o mesmo comprimento .

DD'CCBB'AA' '

C C’B

A

D

A’

B’

D’

Vectores

Muitas vezes, também representamos um vector por uma letra minúscula, por exemplo . Assim, fazendo temos

C C’B

A

D

A’

B’

D’

u

u

u

u

u

u

DD'CCBB'AA' '

Vectores

Muitas vezes, também representamos um vector por uma letra minúscula, por exemplo . Assim, fazendo temos

C C’B

A

D

A’

B’

D’

u

F1 F2

u

u

u

u

u

DD'CCBB'AA' '

Translações

Assim, dizemos que:

C C’B

A

D

A’

B’

D’

F1 F2

u

u

u

u

Translações

Assim, dizemos que:

C C’B

A

D

A’

B’

D’

u

F1 F2

u

u

u

u

A bandeira F1 é imagem da bandeira F2 numa translação associada ao vector .

Propriedades das translações

Tal como nas rotações

A imagem de um segmento de recta é um segmento de recta geometricamente igual

Exemplo: [AD] [A’D’]

A imagem de um ângulo é um ângulo geometricamente igual.Exemplo: CAB C’A’B’

Estas propriedades são comuns a todas as translações.

Simetrias axiais ou Reflexão

Consideremos uma bandeira F1.

F1C

A

B

Consideremos uma bandeira F1.

D

Simetrias axiais ou Reflexão

F1C

A

B

Suponhamos que queremos construir uma bandeira F2 pela simetria de uma recta r.

D

r

Simetrias axiais ou Reflexão

F1C

A

B

Duas situações podem ocorrer:

D

r

se um ponto M está na recta, então o seu transformado é o próprio M.

M’ M

Simetrias axiais ou Reflexão

F1C

A

B

Duas situações podem ocorrer:

D

r

se um ponto M está na recta, então o seu transformado é o próprio M.

se um ponto M não está sobre a recta, então o seu transforma-do é tal que a recta r seja a mediatriz do segmento [MM’].

MM’

Simetrias axiais ou Reflexão

F1C

A

B

Duas situações podem ocorrer:

D

r

se um ponto M está na recta, então o seu transformado é o próprio M.

se um ponto M não está sobre a recta, então o seu transforma-do é tal que a recta r seja a mediatriz do segmento [MM’].

MM’

Simetrias axiais ou Reflexão

F1C

A

B

Os pontos M e M’ dizem-se simétricos relativamente à recta r.

D

r

MM’

Simetrias axiais ou Reflexão

C

A

B

Vamos passar à determinação das imagens dos pontos A, B, C e D.

D

r

A’

B’C’

D’

F1

Simetrias axiais ou Reflexão

C

A

B

D

r

A’

B’C’

D’

Unindo os novos pontos obtemos a bandeira F2 com a mesma forma e dimensão da bandeira F1, só que invertida.

F1

Simetrias axiais ou Reflexão

C

A

B

D

r

A’

B’C’

D’

Unindo os novos pontos obtemos a bandeira F2 com a mesma forma e dimensão da bandeira F1, só que invertida.

F1F2

Simetrias axiais ou Reflexão

C

A

B

D

r

A’

B’C’

D’

F1F2

Dizemos que a bandeira F2 é a imagem ou o transformado da bandeira F1.

Simetrias axiais ou Reflexão

C

A

B

D

r

A’

B’C’

D’

F1F2

À transformação ocorrida dá-se o nome de simetria axial.

Simetrias axiais ou Reflexão

Assim, dizemos que a imagem de uma figura por uma simetria é uma figura que se diz simétrica em relação à recta r.

C

A

B

D

r

A’

B’C’

D’

F1F2

A recta r diz-se eixo de simetria.

Simetrias axiais ou Reflexão

Propriedades das simetrias axiais

Então,

A imagem de um segmento de recta é um segmento de recta geometricamente igual

Exemplo: [AD] [A’D’]A imagem de um ângulo é um ângulo geometricamente igual, mas orientado em sentido contrário.Exemplo: CAB C’A’B’

Estas propriedades são comuns a todas as simetrias axiais.

Uma reflexão deslizante, tal como o nome sugere, é um movimento rígido que consiste numa translação seguida de uma reflexão ou vice-versa. O eixo da reflexão deve ser paralelo à direcção de translação.

Reflexão Deslizante

Comparação das propriedades das isometrias Nas rotações e nas translações a figura resultante tem o mesmo sentido. Nas simetrias axiais a figura aparece invertida.

As rotações e as translações mantém o sentido dos ângulos. As simetrias axiais invertem o sentido dos ângulos. As rotações, translações e simetrias axiais mantém a medida de comprimento dos segmentos As rotações, translações e simetrias axiais mantém a medida de amplitude dos ângulos.

Classificação das isometrias

Isometrias positivas mantém o sentido dos ângulos orientados

Estas características levam-nos a classificar as isometrias em dois tipos:

Isometrias negativas invertem o sentido dos ângulos orientados

Exemplo: Rotações, translações.

Exemplo: Simetrias axiais.

Isometrias

Uma Isometria é uma transformação geométrica em que são conservados as medidas de comprimento dos segmentos de recta e as medidas de amplitude dos ângulos.

Mas afinal o que são isometrias?