Teoremas de Energia
-
Upload
antonio-lucca-araujo -
Category
Documents
-
view
417 -
download
9
Embed Size (px)
Transcript of Teoremas de Energia

Se um corpo livre de variações de temperatura e de recalques de apoios está em equilíbrio sob a ação de dois sistemas independentes de forças externas, o trabalho do primeiro sistema de forças na deformação produzida pelo segundo sistema de forças é igual ao trabalho produzido pelo segundo sistema de forças na deformação produzida pelo primeiro sistema de forças.
Teorema de Betti
2

Seja uma viga submetida a duas cargas independentes. A aplicação dessas forças produzirá um trabalho sobre a viga que a deixará na seguinte configuração deslocada.
Teorema de Betti
5

Se imaginarmos que foi aplicada primeiro, teremos na viga o deslocamento provocado por P1 nos pontos 1 e 2. Esses deslocamentos são funções de P1 e podem ser representados pela equação:
Teorema de Betti
6

Da mesma forma, supondo que seja aplicada após , a viga, que já assumiu uma configuração deslocada, se desloca devido a aplicação da força , havendo, nos pontos 1
e 2, deslocamentos dados pelas equações:
Nessas equações, os valores de α são os coeficientes de influência das forças nos valores dos deslocamentos.
Teorema de Betti
7

Quando P2 começou a ser aplicada, surgiu no ponto 1, onde P1 já estava aplicada com seu valor integral, um deslocamento x21. Desse modo, a aplicação de P2 fez com que P1 produzisse um trabalho definido pela equação:
Teorema de Betti
9

Assim, o trabalho total realizado pelas duas forças sobre a estrutura é dado por:
Teorema de Betti
10

Caso a ordem de aplicação das duas forças fosse invertida, isto é, aplicássemos primeiro P2 e em seguida P1, verificaríamos que o trabalho produzido pelo sistema de forças é dado pela equação:
Que é exatamente igual ao valor dado pela equação do caso anterior.
Teorema de Betti
11

Quando um corpo livre de variação de temperatura e de recalques de apoio está em equilíbrio elástico sob a ação de um sistema de forças externas, o sistema de forças que equilibra o sistema de forças externas é aquele que minimiza o trabalho interno de deformação.
Matematicamente, o teorema de Menabrea é definido pela equação (2). Nessa equação, é a função que descreve o trabalho interno de deformação e %& são as reações de apoio, isto é, a derivada parcial do trabalho externo em relação a cada reação de apoio deve ser nula, já que supomos ausência de recalques de apoio e variação de temperatura.
Teorema de Menabrea
15

Quando um corpo livre de variação de temperatura e de recalques de apoio está em equilíbrio elástico sob a ação de um sistema de forças externas, o sistema de forças que equilibra o sistema de forças externas é aquele que minimiza o trabalho interno de deformação.
Teorema de Menabrea
16

A viga em balanço suporta uma força uniformemente distribuída e uma força concentrada P aplicada na ponta do balanço. Sabendo que a viga possui 2,0 m de comprimento, rigidez à flexão EI = 5 MN.m2 e que as forças aplicadas são w = 4 kN/m e P = 6 kN. Empregando o Teorema de Castigliano, determine o deslocamento sofrido pela extremidade livre.
Exemplo 1
17

A viga hiperestática está submetida a uma força uniformemente distribuída. Determine a reação de apoio vertical no nó A empregando o Teorema de Menabrea.
Exemplo 2
20